Blame view
orbimote/field_test_device/app_clock.c
14.2 KB
ca223e024
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
/* * app_clock.c * * Implementation of LoRaWAN Application Layer Clock Synchronization v1.0.0 Specification * https://lora-alliance.org/resource-hub/lorawanr-application-layer-clock-synchronization-specification-v100 * * LoRaWANยฎ Application Layer Clock Synchronization Specification, authored by the FUOTA Working Group of the * LoRa Allianceยฎ Technical Committee, proposes an application layer messaging package running over LoRaWANยฎ * to synchronize the real-time clock of an end-device to the networkโs GPS clock with second accuracy. * * This package is useful for end-devices which do not have access to other accurate time source. * An end-device using LoRaWAN 1.1 or above SHOULD use DeviceTimeReq MAC command instead of this package. * ClassB end-devices have a more efficient way of synchronizing their clock, the classB network beacon. They * SHOULD NOT use this package and directly use the beacon time information. * End-devices with an accurate external clock source (e.g.: GPS) SHOULD use that clock source instead. * * Remark: Since GPS clock sources can be jammed or spoofed, this package can be used for secure time distribution. * https://wiki.eclipse.org/images/3/3a/Eclipse-IoTDay2020Grenoble-friedt.pdf */ /** * @ingroup pkg_lorawan_app_clock * @{ * * @file * @brief Implementation of Implementation of LoRaWAN Application Layer Clock Synchronization v1.0.0 Specification. * * @author Didier Donsez <didier.donsez@univ-grenoble-alpes.fr> * * @} */ #define ENABLE_DEBUG (1) #include "debug.h" #include "app_clock.h" #include "xtimer.h" #include <time.h> #include "net/loramac.h" #include "semtech_loramac.h" #include "loramac_utils.h" #include "periph_conf.h" #include "periph/rtc.h" // 1972 and 1976 have 366 days (DELTA_EPOCH_GPS is 315964800 seconds) // GPS Epoch consists of a count of weeks and seconds of the week since 0 hours (midnight) Sunday 6 January 1980 #define DELTA_EPOCH_GPS ((365*8 + 366*2 + 5)*(24*60*60)) // The end-device responds by sending up to NbTransmissions AppTimeReq messages // with the AnsRequired bit set to 0. // The end-device stops re-transmissions of the AppTimeReq if a valid AppTimeAns is received. // If the NbTransmissions field is 0, the command SHALL be silently discarded. // The delay between consecutive transmissions of the AppTimeReq is application specific. // TODO static unsigned int NbTransmissions = 0; // TokenReq is a 4 bits counter initially set to 0. TokenReq is incremented (modulo 16) each time the end-device receives and processes successfully an AppTimeAns message. static unsigned int TokenReq = 0; // If the AnsRequired bit is set to 1 the end-device expects an answer whether its clock is well // synchronized or not. If this bit is set to 0, this signals to the AS that it only needs to answer if // the end-device clock is de-synchronized. // TODO static unsigned int AnsRequired = 1; // Period encodes the periodicity of the AppTimeReq transmissions. The actual periodicity in // seconds is 128.2๐๐๐๐๐๐ ยฑ๐๐๐๐(30) where ๐๐๐๐(30) is a random integer in the +/-30sec // range varying with each transmission. static bool isPeriodDefined = false; static unsigned int Period = 0; #define sent_buffer_SIZE ((1 + sizeof(APP_CLOCK_PackageVersionAns_t)) + (1 + sizeof(APP_CLOCK_DeviceAppTimePeriodicityAns_t)) + (1 + sizeof(APP_CLOCK_AppTimeReq_t))) static uint8_t sent_buffer[sent_buffer_SIZE]; static uint32_t sent_buffer_cursor = 0; static uint32_t sent_buffer_device_time_pos = 0; static time_t lastTimeCorrection = 0; // 01/01/1970 /* * print a tm struct */ #define TM_YEAR_OFFSET (1900) /** * Print the time * * @param label the label prefixing the time * @param time the time */ static void print_time(const char *label, const struct tm *time) { DEBUG("%s %04d-%02d-%02d %02d:%02d:%02d ", label, time->tm_year + TM_YEAR_OFFSET, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec); } /** * Print the RTC time */ void app_clock_print_rtc(void) { /* read RTC */ struct tm current_time; rtc_get_time(¤t_time); print_time("[clock] Current RTC time : ", ¤t_time); struct tm lastTimeCorrectionTime = *localtime(&lastTimeCorrection); if (lastTimeCorrection == 0) { DEBUG("[clock] Last correction : never "); } else { print_time("[clock] Last correction : ", &lastTimeCorrectionTime); } } /** * Get the RTC time in seconds since 1/1/1980 (GPS time) */ static unsigned int getTimeSinceEpoch(void) { struct tm current_time; // Read the RTC current time rtc_get_time(¤t_time); print_time("[clock] Current time: ", ¤t_time); time_t timeSinceEpoch = mktime(¤t_time); // substract number of seconds between 6/1/1980 and 1/1/1970 timeSinceEpoch -= DELTA_EPOCH_GPS; return timeSinceEpoch; } /** * Correct the RTC time * * @param timeCorrection the correction to apply to the RTC */ static void correct_rtc(int timeCorrection) { struct tm current_time; // Read the RTC current time rtc_get_time(¤t_time); print_time("[clock] Current time : ", ¤t_time); time_t timeSinceEpoch = mktime(¤t_time); // Apply correction timeSinceEpoch += timeCorrection; DEBUG("[clock] Time Correction : %d ", timeCorrection); current_time = *localtime(&timeSinceEpoch); rtc_set_time(¤t_time); lastTimeCorrection = mktime(¤t_time); print_time("[clock] RTC time fixed : ", ¤t_time); } /** * Set the RTC time * * @param timeToSet the time in seconds since 6/1/1980 (GPS start time) */ static void set_rtc(unsigned int timeToSet) { struct tm current_time; // Read the RTC current time rtc_get_time(¤t_time); print_time("[clock] Current time : ", ¤t_time); time_t _TimeToSet = timeToSet + DELTA_EPOCH_GPS; current_time = *localtime(&_TimeToSet); rtc_set_time(¤t_time); lastTimeCorrection = mktime(¤t_time); print_time("[clock] RTC time fixed : ", ¤t_time); } int8_t app_clock_process_downlink(semtech_loramac_t *loramac) { DEBUG("[clock] app_clock_process_downlink "); uint32_t len = loramac->rx_data.payload_len; uint32_t idx = 0; uint8_t *payload = (uint8_t*) loramac->rx_data.payload; int8_t error = APP_CLOCK_OK; sent_buffer_cursor = 0; bool contains_APP_CLOCK_CID_PackageVersionReq = false; bool contains_APP_CLOCK_CID_DeviceAppTimePeriodicityReq = false; bool contains_APP_CLOCK_CID_AppTimeAns = false; bool contains_APP_CLOCK_CID_ForceDeviceResyncReq = false; #ifdef EXPERIMENTAL bool contains_X_APP_CLOCK_CID_AppTimeSetReq = false; #endif while (idx < len && (error == APP_CLOCK_OK )) { uint8_t cid = payload[idx]; switch (cid) { case APP_CLOCK_CID_PackageVersionReq : DEBUG("[clock] APP_CLOCK_CID_PackageVersionReq ") ; if (contains_APP_CLOCK_CID_PackageVersionReq) { error = APP_CLOCK_CID_ALREADY_PROCESS; DEBUG("[clock] APP_CLOCK_CID_PackageVersionReq, error=%d ", error); break; } contains_APP_CLOCK_CID_PackageVersionReq = true; if (idx + 1 + 0 <= len) { sent_buffer[sent_buffer_cursor] = APP_CLOCK_CID_PackageVersionAns; APP_CLOCK_PackageVersionAns_t *pva = (APP_CLOCK_PackageVersionAns_t*) (sent_buffer + (1 + sent_buffer_cursor)); pva->PackageIdentifier = 1; pva->PackageVersion = 1; sent_buffer_cursor += (1 + sizeof(APP_CLOCK_PackageVersionAns_t)); idx += 1; } else { error = APP_CLOCK_ERROR_OVERFLOW; DEBUG("[clock] APP_CLOCK_CID_PackageVersionReq, error=%d ", error); } break; case APP_CLOCK_CID_DeviceAppTimePeriodicityReq : DEBUG("[clock] APP_CLOCK_CID_DeviceAppTimePeriodicityReq ") ; if (contains_APP_CLOCK_CID_DeviceAppTimePeriodicityReq) { error = APP_CLOCK_CID_ALREADY_PROCESS; DEBUG("[clock] APP_CLOCK_CID_DeviceAppTimePeriodicityReq, error=%d ", error); break; } contains_APP_CLOCK_CID_DeviceAppTimePeriodicityReq = true; if (idx + 1 + sizeof(APP_CLOCK_DeviceAppTimePeriodicityReq_t) <= len) { APP_CLOCK_DeviceAppTimePeriodicityReq_t *datpr = (APP_CLOCK_DeviceAppTimePeriodicityReq_t*) (payload + (idx + 1)); isPeriodDefined = true; Period = datpr->Period; sent_buffer[sent_buffer_cursor] = APP_CLOCK_CID_DeviceAppTimePeriodicityAns; APP_CLOCK_DeviceAppTimePeriodicityAns_t *datpa = (APP_CLOCK_DeviceAppTimePeriodicityAns_t*) (sent_buffer + (1 + sent_buffer_cursor)); sent_buffer_device_time_pos = 1 + sent_buffer_cursor; datpa->NotSupported = 0; // The endpoint is not supporting periodicity currently datpa->Time = getTimeSinceEpoch(); sent_buffer_cursor += (1 + sizeof(APP_CLOCK_DeviceAppTimePeriodicityAns_t)); idx += (1 + sizeof(APP_CLOCK_DeviceAppTimePeriodicityReq_t)); } else { error = APP_CLOCK_ERROR_OVERFLOW; DEBUG("[clock] APP_CLOCK_CID_DeviceAppTimePeriodicityReq, error=%d ", error); } break; case APP_CLOCK_CID_AppTimeAns : DEBUG("[clock] APP_CLOCK_CID_AppTimeAns ") ; if (contains_APP_CLOCK_CID_AppTimeAns) { error = APP_CLOCK_CID_ALREADY_PROCESS; DEBUG("[clock] APP_CLOCK_CID_AppTimeAns, error=%d ", error); break; } contains_APP_CLOCK_CID_AppTimeAns = true; if (idx + 1 + sizeof(APP_CLOCK_AppTimeAns_t) <= len) { APP_CLOCK_AppTimeAns_t *ata = (APP_CLOCK_AppTimeAns_t*) (payload + (idx + 1)); unsigned int TokenAns = ata->TokenAns; if (TokenAns != TokenReq) { error = APP_CLOCK_BAD_TOKEN; DEBUG("[clock] APP_CLOCK_CID_AppTimeAns, error=%d ", error); break; } correct_rtc(ata->TimeCorrection); // increment TokenReq TokenReq++; TokenReq %= 16; idx += (1 + sizeof(APP_CLOCK_AppTimeAns_t)); } else { error = APP_CLOCK_ERROR_OVERFLOW; DEBUG("[clock] APP_CLOCK_CID_AppTimeAns, error=%d ", error); } break; case APP_CLOCK_CID_ForceDeviceResyncReq : DEBUG("[clock] APP_CLOCK_CID_ForceDeviceResyncReq ") ; if (contains_APP_CLOCK_CID_ForceDeviceResyncReq) { error = APP_CLOCK_CID_ALREADY_PROCESS; DEBUG("[clock] APP_CLOCK_CID_ForceDeviceResyncReq, error=%d ", error); break; } contains_APP_CLOCK_CID_ForceDeviceResyncReq = true; if (idx + 1 + sizeof(APP_CLOCK_ForceDeviceResyncReq_t) <= len) { APP_CLOCK_ForceDeviceResyncReq_t *fdrr = (APP_CLOCK_ForceDeviceResyncReq_t*) (payload + (idx + 1)); unsigned int NbTransmissions = fdrr->NbTransmissions; (void) NbTransmissions; // TODO idx += (1 + sizeof(APP_CLOCK_ForceDeviceResyncReq_t)); error = APP_CLOCK_NOT_IMPLEMENTED; DEBUG("[clock] APP_CLOCK_CID_ForceDeviceResyncReq, error=%d ", error); } else { error = APP_CLOCK_ERROR_OVERFLOW; DEBUG("[clock] APP_CLOCK_CID_ForceDeviceResyncReq, error=%d ", error); } break; #ifdef EXPERIMENTAL case X_APP_CLOCK_CID_AppTimeSetReq : DEBUG("[clock] X_APP_CLOCK_CID_AppTimeSetReq ") ; if (contains_X_APP_CLOCK_CID_AppTimeSetReq) { error = APP_CLOCK_CID_ALREADY_PROCESS; DEBUG("[clock] X_APP_CLOCK_CID_AppTimeSetReq, error=%d ", error); break; } contains_X_APP_CLOCK_CID_AppTimeSetReq = true; if (idx + 1 + sizeof(X_APP_CLOCK_AppTimeSetReq_t) <= len) { X_APP_CLOCK_AppTimeSetReq_t *atsr = (X_APP_CLOCK_AppTimeSetReq_t*) (payload + (idx + 1)); set_rtc(atsr->TimeToSet); idx += (1 + sizeof(X_APP_CLOCK_AppTimeSetReq_t)); } else { error = APP_CLOCK_ERROR_OVERFLOW; DEBUG("[clock] X_APP_CLOCK_CID_AppTimeSetReq, error=%d ", error); } break; #endif default: error = APP_CLOCK_UNKNOWN_CID; DEBUG("[clock] APP_CLOCK : Unknown CID, error=%d ", error) ; break; } } DEBUG("[clock] sent_buffer:"); printf_ba(sent_buffer, sent_buffer_cursor); DEBUG(" "); if (error == APP_CLOCK_OK) { error = app_clock_send_buffer(loramac); } else { sent_buffer_cursor = 0; } // TODO if NbTransmissions > 0, send an APP_CLOCK_CID_AppTimeReq return error; } int8_t app_clock_send_app_time_req(semtech_loramac_t *loramac) { DEBUG("[clock] app_clock_send_app_time_req "); uint8_t payload[1 + sizeof(APP_CLOCK_AppTimeReq_t)]; payload[0] = APP_CLOCK_CID_AppTimeReq; APP_CLOCK_AppTimeReq_t *atr = (APP_CLOCK_AppTimeReq_t*) (payload + 1); atr->TokenReq = TokenReq; atr->AnsRequired = 1; atr->DeviceTime = getTimeSinceEpoch(); // save the current fPort and set the APP_CLOCK_PORT uint8_t current_fPort = semtech_loramac_get_tx_port(loramac); semtech_loramac_set_tx_port(loramac, APP_CLOCK_PORT); /* send the LoRaWAN message */ uint8_t ret = semtech_loramac_send(loramac, payload, 1 + sizeof(APP_CLOCK_AppTimeReq_t)); int8_t error; if (ret != SEMTECH_LORAMAC_TX_DONE) { DEBUG("[clock] Cannot send buffer : ret code: %d (%s) ", ret, loramac_utils_err_message(ret)); if (ret == SEMTECH_LORAMAC_TX_SCHEDULE || ret == SEMTECH_LORAMAC_DUTYCYCLE_RESTRICTED) { error = APP_CLOCK_TX_RETRY_LATER; } else { error = APP_CLOCK_TX_KO; // reset the buffer sent_buffer_cursor = 0; } } else { error = APP_CLOCK_OK; } // restore the current fPort semtech_loramac_set_tx_port(loramac, current_fPort); return error; } int8_t app_clock_send_buffer(semtech_loramac_t *loramac) { DEBUG("[clock] app_clock_send_buffer "); int8_t error = APP_CLOCK_OK; if (sent_buffer_cursor != 0) { // save the current fPort and set the APP_CLOCK_PORT uint8_t current_fPort = semtech_loramac_get_tx_port(loramac); semtech_loramac_set_tx_port(loramac, APP_CLOCK_PORT); if (sent_buffer_device_time_pos != 0) { APP_CLOCK_DeviceAppTimePeriodicityAns_t *datpa = (APP_CLOCK_DeviceAppTimePeriodicityAns_t*) (sent_buffer + (1 + sent_buffer_device_time_pos)); datpa->Time = getTimeSinceEpoch(); } /* send the LoRaWAN message */ uint8_t ret = semtech_loramac_send(loramac, sent_buffer, sent_buffer_cursor); if (ret != SEMTECH_LORAMAC_TX_DONE) { DEBUG("[clock] Cannot send buffer : ret code: %d (%s) ", ret, loramac_utils_err_message(ret)); if (ret == SEMTECH_LORAMAC_TX_SCHEDULE || ret == SEMTECH_LORAMAC_DUTYCYCLE_RESTRICTED) { error = APP_CLOCK_TX_RETRY_LATER; } else { error = APP_CLOCK_TX_KO; // reset the buffer sent_buffer_cursor = 0; } } else { // reset the buffer sent_buffer_cursor = 0; } // restore the current fPort semtech_loramac_set_tx_port(loramac, current_fPort); } return error; } bool app_clock_is_pending_buffer(void) { return sent_buffer_cursor != 0; } |