Compare View
Commits (2)
Diff
Showing 13 changed files Side-by-side Diff
- .gitignore
- Makefile
- demo_critere_filtre.m
- ifcs2018_journal.tex
- images/custom_criterion.pdf
- images/max_rejection/prn_1000.pdf
- images/max_rejection/prn_2000.pdf
- images/max_rejection/prn_500.pdf
- images/mean_criterion.pdf
- images/min_area/prn_100.pdf
- images/min_area/prn_150.pdf
- images/min_area/prn_50.pdf
- images/sum_rejection.pdf
.gitignore
Makefile
... | ... | @@ -4,7 +4,7 @@ TEX = pdflatex -shell-escape -interaction=nonstopmode -file-line-error |
4 | 4 | BIB = bibtex |
5 | 5 | TARGET = ifcs2018 |
6 | 6 | |
7 | -all: $(TARGET)_abstract $(TARGET)_poster $(TARGET)_proceeding | |
7 | +all: $(TARGET)_abstract $(TARGET)_poster $(TARGET)_proceeding $(TARGET)_journal | |
8 | 8 | |
9 | 9 | view: $(TARGET) |
10 | 10 | evince $(TARGET).pdf |
... | ... | @@ -28,10 +28,17 @@ $(TARGET)_proceeding: $(TARGET)_proceeding.tex references.bib biblio.bib |
28 | 28 | $(TEX) $@.tex |
29 | 29 | $(TEX) $@.tex |
30 | 30 | |
31 | +$(TARGET)_journal: $(TARGET)_journal.tex references.bib biblio.bib | |
32 | + $(TEX) $@.tex | |
33 | + $(BIB) $@ | |
34 | + $(TEX) $@.tex | |
35 | + $(TEX) $@.tex | |
36 | + | |
31 | 37 | clean: |
32 | - rm -f $(TARGET).aux $(TARGET).log $(TARGET).out $(TARGET).bbl $(TARGET).blg | |
33 | - rm -f $(TARGET)_proceeding.aux $(TARGET)_proceeding.log $(TARGET)_proceeding.out $(TARGET)_proceeding.bbl $(TARGET)_proceeding.blg | |
38 | + rm -f $(TARGET)_abstract.aux $(TARGET)_abstract.log $(TARGET)_abstract.out $(TARGET)_abstract.bbl $(TARGET)_abstract.blg | |
34 | 39 | rm -f $(TARGET)_poster.aux $(TARGET)_poster.log $(TARGET)_poster.out |
40 | + rm -f $(TARGET)_proceeding.aux $(TARGET)_proceeding.log $(TARGET)_proceeding.out $(TARGET)_proceeding.bbl $(TARGET)_proceeding.blg | |
41 | + rm -f $(TARGET)_journal.aux $(TARGET)_journal.log $(TARGET)_journal.out $(TARGET)_journal.bbl $(TARGET)_journal.blg | |
35 | 42 | |
36 | 43 | mrproper: clean |
37 | - rm -f $(TARGET)_abstract.pdf $(TARGET)_proceeding.pdf $(TARGET)_poster.pdf | |
44 | + rm -f $(TARGET)_abstract.pdf $(TARGET)_proceeding.pdf $(TARGET)_poster.pdf $(TARGET)_journal.pdf |
demo_critere_filtre.m
... | ... | @@ -0,0 +1,89 @@ |
1 | +clear all; | |
2 | + | |
3 | +global N = 2048; | |
4 | + | |
5 | +function rejection = rejection_criteria(log_data, fc) | |
6 | + N = length(log_data); | |
7 | + | |
8 | + % Index of the first point in the tail fir | |
9 | + index_tail = round((fc + 0.1) * N) + 1; | |
10 | + | |
11 | + % Index of th last point on the band | |
12 | + index_band = round((fc - 0.1) * N); | |
13 | + | |
14 | + % Get the worst rejection in stopband | |
15 | + worst_rejection = -max(log_data(index_tail:end)); | |
16 | + | |
17 | + % Get the total of deviation in passband | |
18 | + worst_band = mean(-1 * abs(log_data(1:index_band))); | |
19 | + | |
20 | + % Compute the rejection | |
21 | + passband_malus = 10; % weighted value to penalize the deviation in passband | |
22 | + rejection = worst_band * passband_malus + worst_rejection; | |
23 | +endfunction | |
24 | + | |
25 | +function [h, log_curve, rejection] = compute_freqz(filename) | |
26 | + global N; | |
27 | + | |
28 | + b = load(filename); | |
29 | + [h, w] = freqz(b, 1, N/2); | |
30 | + mag = abs(h); | |
31 | + mag = mag ./ mag(1); | |
32 | + log_curve = 20 * log10(mag); | |
33 | + | |
34 | + rejection = rejection_criteria(log_curve, 0.5); | |
35 | +endfunction | |
36 | + | |
37 | +# Stages | |
38 | +hTotal = ones(N/2, 1); | |
39 | +% [h, curve1, c1] = compute_freqz("filters/fir1/fir1_033_int08"); % 1) -8dB | |
40 | +% [h, curve1, c1] = compute_freqz("filters/fir1/fir1_037_int08"); % 2) -9dB | |
41 | +[h, curve1, c1] = compute_freqz("filters/fir1/fir1_037_int08"); | |
42 | +hTotal = hTotal .* h; | |
43 | +% [h, curve2, c2] = compute_freqz("filters/fir1/fir1_033_int10"); % 1) -8dB | |
44 | +% [h, curve2, c2] = compute_freqz("filters/fir1/fir1_033_int10"); % 2) -9dB | |
45 | +[h, curve2, c2] = compute_freqz("filters/fir1/fir1_033_int10"); | |
46 | +hTotal = hTotal .* h; | |
47 | +% [h, curve3, c3] = compute_freqz("filters/fir1/fir1_033_int08"); | |
48 | +% hTotal = hTotal .* h; | |
49 | +% [h, curve4, c4] = compute_freqz("filters/fir1/fir1_033_int10"); | |
50 | +% hTotal = hTotal .* h; | |
51 | +% [h, curve5, c5] = compute_freqz("filters/fir1/fir1_015_int11"); | |
52 | +% hTotal = hTotal .* h; | |
53 | + | |
54 | +# Log total | |
55 | +mag = abs(hTotal); | |
56 | +mag = mag ./ mag(1); | |
57 | +log_freqz = 20 * log10(mag); | |
58 | +cTotal = rejection_criteria(log_freqz, 0.5); | |
59 | + | |
60 | +[ c1+c2 cTotal ] | |
61 | +% [ c1+c2+c3+c4+c5 cTotal ] | |
62 | + | |
63 | +clf; | |
64 | +f_axe = [1:N/2] * 2/N; | |
65 | +hold on; | |
66 | +color = [0/255 114/255 189/255]; | |
67 | +plot(f_axe, curve1, "linewidth", 1.5, "color", color); | |
68 | +plot([0 1], [-c1 -c1], "--", "linewidth", 1.5, "color", color); | |
69 | + | |
70 | +color = [217/255 83/255 25/255]; | |
71 | +plot(f_axe, curve2, "linewidth", 1.5, "color", color); | |
72 | +plot([0 1], [-c2 -c2], "--", "linewidth", 1.5, "color", color); | |
73 | +% plot(f_axe, curve3, "linewidth", 1.5); | |
74 | +% plot(f_axe, curve4, "linewidth", 1.5); | |
75 | +% plot(f_axe, curve5, "linewidth", 1.5); | |
76 | + | |
77 | +color = [237/255 177/255 32/255]; | |
78 | +plot(f_axe, log_freqz, "linewidth", 1.5, "color", color); | |
79 | +plot([0 1], [-cTotal -cTotal], "--", "linewidth", 1.5, "color", color); | |
80 | +plot([0 1], [-(c1 + c2) -(c1 + c2)], ":", "linewidth", 1.5, "color", color); | |
81 | + | |
82 | +plot([0.4 0.4], [-500 50], "k:") | |
83 | +plot([0.6 0.6], [-500 50], "k:") | |
84 | +ylim([-200 10]) | |
85 | +hold off; | |
86 | + | |
87 | +xlabel("Normalized Frequency (a.u.)") | |
88 | +ylabel("Rejection (dB)") | |
89 | +legend("Reponse of 1st filter", "Rejection of 1st filter", "Reponse of 2nd filter", "Rejection of 2nd filter", "Reponse Total", "Actual Rejection", "Expected Rejection", "location", "southwest") |
ifcs2018_journal.tex
... | ... | @@ -0,0 +1,461 @@ |
1 | +\documentclass[a4paper,conference]{IEEEtran/IEEEtran} | |
2 | +\usepackage{graphicx,color,hyperref} | |
3 | +\usepackage{amsfonts} | |
4 | +\usepackage{amsthm} | |
5 | +\usepackage{amssymb} | |
6 | +\usepackage{amsmath} | |
7 | +\usepackage{algorithm2e} | |
8 | +\usepackage{url,balance} | |
9 | +\usepackage[normalem]{ulem} | |
10 | +\usepackage{tikz} | |
11 | +\usetikzlibrary{positioning,fit} | |
12 | +\usepackage{multirow} | |
13 | +\usepackage{scalefnt} | |
14 | + | |
15 | +% correct bad hyphenation here | |
16 | +\hyphenation{op-tical net-works semi-conduc-tor} | |
17 | +\textheight=26cm | |
18 | +\setlength{\footskip}{30pt} | |
19 | +\pagenumbering{gobble} | |
20 | +\begin{document} | |
21 | +\title{Filter optimization for real time digital processing of radiofrequency signals: application | |
22 | +to oscillator metrology} | |
23 | + | |
24 | +\author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, | |
25 | +G. Goavec-M\'erou\IEEEauthorrefmark{1}, | |
26 | +P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} | |
27 | +\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } | |
28 | +\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ | |
29 | +Email: \{pyb2,jmfriedt\}@femto-st.fr} | |
30 | +} | |
31 | +\maketitle | |
32 | +\thispagestyle{plain} | |
33 | +\pagestyle{plain} | |
34 | +\newtheorem{definition}{Definition} | |
35 | + | |
36 | +\begin{abstract} | |
37 | +Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to | |
38 | +radiofrequency signal processing. Applied to oscillator characterization in the context | |
39 | +of ultrastable clocks, stringent filtering requirements are defined by spurious signal or | |
40 | +noise rejection needs. Since real time radiofrequency processing must be performed in a | |
41 | +Field Programmable Array to meet timing constraints, we investigate optimization strategies | |
42 | +to design filters meeting rejection characteristics while limiting the hardware resources | |
43 | +required and keeping timing constraints within the targeted measurement bandwidths. | |
44 | +\end{abstract} | |
45 | + | |
46 | +\begin{IEEEkeywords} | |
47 | +Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter | |
48 | +\end{IEEEkeywords} | |
49 | + | |
50 | +\section{Digital signal processing of ultrastable clock signals} | |
51 | + | |
52 | +Analog oscillator phase noise characteristics are classically performed by downconverting | |
53 | +the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, | |
54 | +followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In | |
55 | +a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by | |
56 | +multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. | |
57 | + | |
58 | +\begin{figure}[h!tb] | |
59 | +\begin{center} | |
60 | +\includegraphics[width=.8\linewidth]{images/schema} | |
61 | +\end{center} | |
62 | +\caption{Fully digital oscillator phase noise characterization: the Device Under Test | |
63 | +(DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and | |
64 | +downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals | |
65 | +and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite | |
66 | +Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays | |
67 | +the spectral characteristics of the phase fluctuations.} | |
68 | +\label{schema} | |
69 | +\end{figure} | |
70 | + | |
71 | +As with the analog mixer, | |
72 | +the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as | |
73 | +well as the generation of the frequency sum signal in addition to the frequency difference. | |
74 | +These unwanted spectral characteristics must be rejected before decimating the data stream | |
75 | +for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the | |
76 | +downconverter | |
77 | +and the decimation processing blocks are core characteristics of an oscillator characterization | |
78 | +system, and must reject out-of-band signals below the targeted phase noise -- typically in the | |
79 | +sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will | |
80 | +use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency | |
81 | +datastream: optimizing the performance of the filter while reducing the needed resources is | |
82 | +hence tackled in a systematic approach using optimization techniques. Most significantly, we | |
83 | +tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with | |
84 | +tunable number of coefficients and tunable number of bits representing the coefficients and the | |
85 | +data being processed. | |
86 | + | |
87 | +\section{Finite impulse response filter} | |
88 | + | |
89 | +We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined | |
90 | +by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the | |
91 | +outputs $y_k$ | |
92 | +\begin{align} | |
93 | + y_n=\sum_{k=0}^N b_k x_{n-k} | |
94 | + \label{eq:fir_equation} | |
95 | +\end{align} | |
96 | + | |
97 | +As opposed to an implementation on a general purpose processor in which word size is defined by the | |
98 | +processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since | |
99 | +not only the coefficient values and number of taps must be defined, but also the number of bits | |
100 | +defining the coefficients and the sample size. For this reason, and because we consider pipeline | |
101 | +processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency | |
102 | +signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but | |
103 | +the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level. | |
104 | +Since latency is not an issue in a openloop phase noise characterization instrument, the large | |
105 | +numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, | |
106 | +is not considered as an issue as would be in a closed loop system. | |
107 | + | |
108 | +The coefficients are classically expressed as floating point values. However, this binary | |
109 | +number representation is not efficient for fast arithmetic computation by an FPGA. Instead, | |
110 | +we select to quantify these floating point values into integer values. This quantization | |
111 | +will result in some precision loss. | |
112 | + | |
113 | +\begin{figure}[h!tb] | |
114 | +\includegraphics[width=\linewidth]{images/demo_filtre} | |
115 | +\caption{Impact of the quantization resolution of the coefficients: the quantization is | |
116 | +set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting | |
117 | +the 30~first and 30~last coefficients out of the initial 128~band-pass | |
118 | +filter coefficients to 0 (red dots).} | |
119 | +\label{float_vs_int} | |
120 | +\end{figure} | |
121 | + | |
122 | +The tradeoff between quantization resolution and number of coefficients when considering | |
123 | +integer operations is not trivial. As an illustration of the issue related to the | |
124 | +relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits | |
125 | +a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon | |
126 | +quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the | |
127 | +taps become null, making the large number of coefficients irrelevant and allowing to save | |
128 | +processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources | |
129 | +to reach a given rejection level, or maximizing out of band rejection for a given computational | |
130 | +resource, will drive the investigation on cascading filters designed with varying tap resolution | |
131 | +and tap length, as will be shown in the next section. Indeed, our development strategy closely | |
132 | +follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} | |
133 | +in which basic blocks are defined and characterized before being assembled \cite{hide} | |
134 | +in a complete processing chain. In our case, assembling the filter blocks is a simpler block | |
135 | +combination process since we assume a single value to be processed and a single value to be | |
136 | +generated at each clock cycle. The FIR filters will not be considered to decimate in the | |
137 | +current implementation: the decimation is assumed to be located after the FIR cascade at the | |
138 | +moment. | |
139 | + | |
140 | +\section{Methodology description} | |
141 | +We want create a new methodology to develop any Digital Signal Processing (DSP) chain | |
142 | +and for any hardware platform (Altera, Xilinx...). To do this we have defined an | |
143 | +abstract model to represent some basic operations of DSP. | |
144 | + | |
145 | +For the moment, we are focused on only two operations: the filtering and the shift of data. | |
146 | +We have chosen this basic operation because the shifting and the filtering have already be studied in | |
147 | +lot of works {\color{red} mettre les nouvelles référence ici} hence it will be easier | |
148 | +to check and validate our results. | |
149 | + | |
150 | +However having only two operations is insufficient to work with complex DSP but | |
151 | +in this paper we only want demonstrate the relevance and the efficiency of our approach. | |
152 | +In future work it will be possible to add more operations and we are able to | |
153 | +model any DSP chain. | |
154 | + | |
155 | +We will apply our methodology on very simple DSP chain. We generate a digital signal | |
156 | +thanks at generator of Pseudo-Random Number (PRN) or thanks at an Analog to Digital | |
157 | +Converter (ADC). Once we have a digital signal, we filter it to decrease the noise level. | |
158 | +Finally we stored some burst of filtered samples before post-processing it. | |
159 | +% TODO: faire un schéma | |
160 | +In this particular case, we want optimize the filtering step to have the best noise | |
161 | +rejection for constrain number of resource or to have the minimal resources | |
162 | +consumption for a given rejection objective. | |
163 | + | |
164 | +The first step of our approach is to model the DSP chain and since we just optimize | |
165 | +the filtering, we have not modeling the PRN generator or the ADC. The filtering can be | |
166 | +done by two ways. The first one we use only one FIR filter with lot of coefficients | |
167 | +to rejection the noise, we called this approach a monolithic approach. And the second one | |
168 | +we select different FIR filters with less coefficients the monolithic filter and we cascaded | |
169 | +it to filtering the signal. | |
170 | + | |
171 | +After each filter we leave the possibility of shifting the filtered data to consume | |
172 | +less resources. Hence in the case of cascaded filter, we define a stage as a filter | |
173 | +and a shifter (the shift could be omitted if we do not need to divide the filtered data). | |
174 | + | |
175 | +\subsection{Model of a FIR filter} | |
176 | +A cascade of filter are composed of $n$ stage. In stage $i$ ($1 \leq i \leq n$) | |
177 | +the FIR has $C_i$ coefficients and each coefficients are integer values with $\pi^C_i$ | |
178 | +bits and the filtered data are shifted of $\pi^S_i$ bits. We define also $\pi^-_i$ as | |
179 | +the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage} | |
180 | +shows a filtering stage. | |
181 | + | |
182 | +\begin{figure} | |
183 | + \centering | |
184 | + \begin{tikzpicture}[node distance=2cm] | |
185 | + \node[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ; | |
186 | + \node[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ; | |
187 | + \node (Start) [left of=FIR] { } ; | |
188 | + \node (End) [right of=Shift] { } ; | |
189 | + | |
190 | + \node[draw,fit=(FIR) (Shift)] (Filter) { } ; | |
191 | + | |
192 | + \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ; | |
193 | + \draw[->] (FIR) -- (Shift) ; | |
194 | + \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ; | |
195 | + \end{tikzpicture} | |
196 | + \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)} | |
197 | + \label{fig:fir_stage} | |
198 | +\end{figure} | |
199 | + | |
200 | +FIR $i$ can reject $F(C_i, \pi_i^C)$ dB. $F$ is determined numerically. | |
201 | +To measure this rejection, we use GNU Octave software to design FIR filter coefficients thanks to two | |
202 | +algorithms (\texttt{firls} and \texttt{fir1}). | |
203 | +For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients. | |
204 | +Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively, | |
205 | +the coefficients are normalized by their absolute maximum before being scaled to integer coefficients. | |
206 | +At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the other are coded on very fewer bits. | |
207 | + | |
208 | +With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter. | |
209 | +Comparing the performance between FIRs requires however a unique criterion. As shown in figure~\ref{fig:fir_mag}, | |
210 | +the FIR magnitude exhibits two parts. | |
211 | + | |
212 | +\begin{figure} | |
213 | + \centering | |
214 | + \begin{tikzpicture}[scale=0.3] | |
215 | + \draw[<->] (0,15) -- (0,0) -- (21,0) ; | |
216 | + \draw[thick] (0,12) -- (8,12) -- (20,0) ; | |
217 | + | |
218 | + \draw (0,14) node [left] { $P$ } ; | |
219 | + \draw (20,0) node [below] { $f$ } ; | |
220 | + | |
221 | + \draw[>=latex,<->] (0,14) -- (8,14) ; | |
222 | + \draw (4,14) node [above] { passband } node [below] { $40\%$ } ; | |
223 | + | |
224 | + \draw[>=latex,<->] (8,14) -- (12,14) ; | |
225 | + \draw (10,14) node [above] { transition } node [below] { $20\%$ } ; | |
226 | + | |
227 | + \draw[>=latex,<->] (12,14) -- (20,14) ; | |
228 | + \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ; | |
229 | + | |
230 | + \draw[>=latex,<->] (16,12) -- (16,8) ; | |
231 | + \draw (16,10) node [right] { rejection } ; | |
232 | + | |
233 | + \draw[dashed] (8,-1) -- (8,14) ; | |
234 | + \draw[dashed] (12,-1) -- (12,14) ; | |
235 | + | |
236 | + \draw[dashed] (8,12) -- (16,12) ; | |
237 | + \draw[dashed] (12,8) -- (16,8) ; | |
238 | + | |
239 | + \end{tikzpicture} | |
240 | + | |
241 | +% \includegraphics[width=.5\linewidth]{images/fir_magnitude} | |
242 | +\caption{Shape of the filter transmitted power $P$ as a function of frequency $f$: | |
243 | +the passband is considered to occupy the initial 40\% of the Nyquist frequency range, | |
244 | +the stopband the last 40\%, allowing 20\% transition width.} | |
245 | +\label{fig:fir_mag} | |
246 | +\end{figure} | |
247 | + | |
248 | +In the transition band, the behavior of the filter is left free, we only care about the passband and the stopband. | |
249 | +Our first criterion considers the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion does not work because we do not consider the shape of the passband. | |
250 | +A second criterion considers the maximum rejection within the stopband minus the mean of the absolute value of passband rejection. With this criterion, the results are significantly improved as shown in figure~\ref{fig:custom_criterion}. | |
251 | + | |
252 | +\begin{figure} | |
253 | +\centering | |
254 | +\includegraphics[width=\linewidth]{images/mean_criterion} | |
255 | +\caption{Mean criterion comparison between monolithic filter and cascade filters} | |
256 | +\label{fig:mean_criterion} | |
257 | +\end{figure} | |
258 | + | |
259 | +\begin{figure} | |
260 | +\centering | |
261 | +\includegraphics[width=\linewidth]{images/custom_criterion} | |
262 | +\caption{Custom criterion comparison between monolithic filter and cascade filters} | |
263 | +\label{fig:custom_criterion} | |
264 | +\end{figure} | |
265 | + | |
266 | +Although we have a efficient criterion to estimate the rejection of one set of coefficient | |
267 | +we have a problem when we sum two or more criterion. If the FIR filter coefficients are the same | |
268 | +between the stage, we have: | |
269 | +$$F_{total} = F_1 + F_2$$ | |
270 | +But when we choose two different set of coefficient, the previous equality are not | |
271 | +true. The figure~\ref{fig:sum_rejection} illustrates the problem. The red and blue curves | |
272 | +are two different filter coefficient and we can see that their maximum on the stopband | |
273 | +are not at the same frequency. So when we sum the rejection criteria (the dotted yellow line) | |
274 | +we do not meet the dashed yellow line. Define the rejection of cascaded filters | |
275 | +is more difficult than just take the summation between all the rejection criteria of each filter. | |
276 | +However this summation gives us an upper bound for rejection although in fact we obtain | |
277 | +better rejection than expected. | |
278 | + | |
279 | +\begin{figure} | |
280 | +\centering | |
281 | +\includegraphics[width=\linewidth]{images/sum_rejection} | |
282 | +\caption{Rejection of two cascaded filters} | |
283 | +\label{fig:sum_rejection} | |
284 | +\end{figure} | |
285 | + | |
286 | +\section{Experiments with fixed area space} | |
287 | + | |
288 | +\begin{figure} | |
289 | +\centering | |
290 | +\includegraphics[width=\linewidth]{images/max_rejection/prn_500} | |
291 | +\caption{Experimental results for design with PRN as data input and 500 a.u. as max arbitrary space} | |
292 | +\label{fig:prn_500} | |
293 | +\end{figure} | |
294 | + | |
295 | +\begin{figure} | |
296 | +\centering | |
297 | +\includegraphics[width=\linewidth]{images/max_rejection/prn_1000} | |
298 | +\caption{Experimental results for design with PRN as data input and 1000 a.u. as max arbitrary space} | |
299 | +\label{fig:prn_1000} | |
300 | +\end{figure} | |
301 | + | |
302 | +\begin{figure} | |
303 | +\centering | |
304 | +\includegraphics[width=\linewidth]{images/max_rejection/prn_2000} | |
305 | +\caption{Experimental results for design with PRN as data input and 2000 a.u. as max arbitrary space} | |
306 | +\label{fig:prn_2000} | |
307 | +\end{figure} | |
308 | + | |
309 | +\begin{table} | |
310 | +\centering | |
311 | +\begin{tabular}{|c|c|ccc|c|c|} | |
312 | +\hline | |
313 | +\multicolumn{2}{|c|}{\multirow{2}{*}{Stage}} & \multicolumn{3}{c|}{Stage} & \multirow{2}{*}{Rejection} & \multirow{2}{*}{Area} \\ \cline{3-5} | |
314 | +\multicolumn{2}{|c|}{} & i = 1 & i = 2 & i = 3 & & \\ \hline | |
315 | + & C & 19 & - & - & & \\ | |
316 | +n = 1 & $pi^C$ & 7 & - & - & 33 dB & 437 a.u. \\ | |
317 | + & $pi^S$ & 0 & - & - & & \\ \hline | |
318 | + & C & 11 & 19 & - & & \\ | |
319 | +n = 2 & $pi^C$ & 5 & 7 & - & 53 dB & 478 a.u. \\ | |
320 | + & $pi^S$ & 16 & 0 & - & & \\ \hline | |
321 | + & C & 9 & 15 & 11 & & \\ | |
322 | +n = 3 & $pi^C$ & 4 & 6 & 5 & 57 dB & 499 a.u. \\ | |
323 | + & $pi^S$ & 16 & 3 & 0 & & \\ \hline | |
324 | +\end{tabular} | |
325 | +\caption{Solver results for design with PRN as data input and 500 a.u. as max arbitrary space} | |
326 | +\label{tbl:prn_500} | |
327 | +\end{table} | |
328 | + | |
329 | +\begin{table} | |
330 | +\centering | |
331 | +{\scalefont{0.85} | |
332 | +\begin{tabular}{|c|c|ccccc|c|c|} | |
333 | +\hline | |
334 | +\multicolumn{2}{|c|}{\multirow{2}{*}{Stage}} & \multicolumn{5}{c|}{Stage} & \multirow{2}{*}{Rejection} & \multirow{2}{*}{Area} \\ \cline{3-7} | |
335 | +\multicolumn{2}{|c|}{} & i = 1 & i = 2 & i = 3 & i = 4 & i = 5 & & \\ \hline | |
336 | + & C & 37 & - & - & - & - & & \\ | |
337 | +n = 1 & $pi^C$ & 11 & - & - & - & - & 56 dB & 999 a.u. \\ | |
338 | + & $pi^S$ & 0 & - & - & - & - & & \\ \hline | |
339 | + & C & 11 & 39 & - & - & - & & \\ | |
340 | +n = 2 & $pi^C$ & 5 & 13 & - & - & - & 82 dB & 972 a.u. \\ | |
341 | + & $pi^S$ & 16 & 0 & - & - & - & & \\ \hline | |
342 | + & C & 9 & 31 & 19 & - & - & & \\ | |
343 | +n = 3 & $pi^C$ & 7 & 8 & 7 & - & - & 93 dB & 990 a.u. \\ | |
344 | + & $pi^S$ & 19 & 2 & 0 & - & - & & \\ \hline | |
345 | + & C & 9 & 19 & 17 & 11 & - & & \\ | |
346 | +n = 4 & $pi^C$ & 4 & 7 & 7 & 5 & - & 99 dB & 992 a.u. \\ | |
347 | + & $pi^S$ & 16 & 3 & 3 & 0 & - & & \\ \hline | |
348 | + & C & 9 & 15 & 11 & 11 & 11 & & \\ | |
349 | +n = 5 & $pi^C$ & 4 & 7 & 5 & 5 & 5 & 99 dB & 998 a.u. \\ | |
350 | + & $pi^S$ & 16 & 3 & 2 & 1 & 1 & & \\ \hline | |
351 | +\end{tabular} | |
352 | +} | |
353 | +\caption{Solver results for design with PRN as data input and 1000 a.u. as max arbitrary space} | |
354 | +\label{tbl:prn_1000} | |
355 | +\end{table} | |
356 | + | |
357 | +\begin{table} | |
358 | +\centering | |
359 | +{\scalefont{0.85} | |
360 | +\begin{tabular}{|c|c|ccccc|c|c|} | |
361 | +\hline | |
362 | +\multicolumn{2}{|c|}{\multirow{2}{*}{Stage}} & \multicolumn{5}{c|}{Stage} & \multirow{2}{*}{Rejection} & \multirow{2}{*}{Area} \\ \cline{3-7} | |
363 | +\multicolumn{2}{|c|}{} & i = 1 & i = 2 & i = 3 & i = 4 & i = 5 & & \\ \hline | |
364 | + & C & 39 & - & - & - & - & & \\ | |
365 | +n = 1 & $pi^C$ & 13 & - & - & - & - & 61 dB & 1131 a.u. \\ | |
366 | + & $pi^S$ & 0 & - & - & - & - & & \\ \hline | |
367 | + & C & 37 & 39 & - & - & - & & \\ | |
368 | +n = 2 & $pi^C$ & 11 & 13 & - & - & - & 117 dB & 1974 a.u. \\ | |
369 | + & $pi^S$ & 17 & 0 & - & - & - & & \\ \hline | |
370 | + & C & 15 & 35 & 35 & - & - & & \\ | |
371 | +n = 3 & $pi^C$ & 9 & 11 & 11 & - & - & 138 dB & 1985 a.u. \\ | |
372 | + & $pi^S$ & 19 & 3 & 0 & - & - & & \\ \hline | |
373 | + & C & 11 & 27 & 27 & 23 & - & & \\ | |
374 | +n = 4 & $pi^C$ & 5 & 9 & 9 & 9 & - & 148 dB & 1993 a.u. \\ | |
375 | + & $pi^S$ & 16 & 3 & 2 & 0 & - & & \\ \hline | |
376 | + & C & 11 & 27 & 31 & 11 & 11 & & \\ | |
377 | +n = 5 & $pi^C$ & 5 & 9 & 8 & 5 & 5 & 153 dB & 2000 a.u. \\ | |
378 | + & $pi^S$ & 16 & 3 & 1 & 0 & 1 & & \\ \hline | |
379 | +\end{tabular} | |
380 | +} | |
381 | +\caption{Solver results for design with PRN as data input and 2000 a.u. as max arbitrary space} | |
382 | +\label{tbl:prn_2000} | |
383 | +\end{table} | |
384 | + | |
385 | +\begin{table} | |
386 | +\centering | |
387 | +\begin{tabular}{|c|c|c|c|c|}\hline | |
388 | +Input & Stages & Computation time & Vivado time & Redpitaya time \\\hline\hline | |
389 | + & 1 & 0.02~s & $\approx$ 20 min & $\approx$ 1 min \\ | |
390 | +PRN & 2 & 1.70~s & $\approx$ 20 min & $\approx$ 1 min \\ | |
391 | + & 3 & 19~s & $\approx$ 20 min & $\approx$ 1 min \\\hline | |
392 | +\end{tabular} | |
393 | +\caption{Time to compute and deploy the designs for PRN 500} | |
394 | +\label{tbl:time_prn_500} | |
395 | +\end{table} | |
396 | + | |
397 | +\begin{table} | |
398 | +\centering | |
399 | +\begin{tabular}{|c|c|c|c|c|}\hline | |
400 | +Input & Stages & Computation time & Vivado time & Redpitaya time \\\hline\hline | |
401 | + & 1 & 0.07~s & $\approx$ 20 min & $\approx$ 1 min \\ | |
402 | + & 2 & 1.31~s & $\approx$ 20 min & $\approx$ 1 min \\ | |
403 | +PRN & 3 & 119~s ($\approx$ 2~min) & $\approx$ 20 min & $\approx$ 1 min \\ | |
404 | + & 4 & 270~s ($\approx$ 5~min) & $\approx$ 20 min & $\approx$ 1 min \\ | |
405 | + & 5 & 5998~s ($\approx$ 2~h) & $\approx$ 20 min & $\approx$ 1 min \\\hline | |
406 | +\end{tabular} | |
407 | +\caption{Time to compute and deploy the designs for PRN 1000} | |
408 | +\label{tbl:time_prn_1000} | |
409 | +\end{table} | |
410 | + | |
411 | +\begin{table} | |
412 | +\centering | |
413 | +\begin{tabular}{|c|c|c|c|c|}\hline | |
414 | +Input & Stages & Computation time & Vivado time & Redpitaya time \\\hline\hline | |
415 | + & 1 & 0.07~s & $\approx$ 20 min & $\approx$ 1 min \\ | |
416 | + & 2 & 0.75~s & $\approx$ 20 min & $\approx$ 1 min \\ | |
417 | +PRN & 3 & 36~s & - & - \\ | |
418 | + & 4 & 14500~s ($\approx$ 4~h) & $\approx$ 20 min & $\approx$ 1 min \\ | |
419 | + & 5 & 74237~s ($\approx$ 20~h) & $\approx$ 20 min & $\approx$ 1 min \\\hline | |
420 | +\end{tabular} | |
421 | +\caption{Time to compute and deploy the designs for PRN 2000} | |
422 | +\label{tbl:time_prn_2000} | |
423 | +\end{table} | |
424 | + | |
425 | +\section{Experiments with fixed rejection target} | |
426 | + | |
427 | +\begin{figure} | |
428 | +\centering | |
429 | +\includegraphics[width=\linewidth]{images/min_area/prn_50} | |
430 | +\caption{Results for design with PRN as data input and 50 dB as aimed rejection level} | |
431 | +\label{fig:prn_500} | |
432 | +\end{figure} | |
433 | + | |
434 | +\begin{figure} | |
435 | +\centering | |
436 | +\includegraphics[width=\linewidth]{images/min_area/prn_100} | |
437 | +\caption{Results for design with PRN as data input and 50 dB as aimed rejection level} | |
438 | +\label{fig:prn_100} | |
439 | +\end{figure} | |
440 | + | |
441 | +\begin{figure} | |
442 | +\centering | |
443 | +\includegraphics[width=\linewidth]{images/min_area/prn_150} | |
444 | +\caption{Results for design with PRN as data input and 2000 a.u. as max arbitrary space} | |
445 | +\label{fig:prn_150} | |
446 | +\end{figure} | |
447 | + | |
448 | +\section{Conclusion} | |
449 | + | |
450 | +\section*{Acknowledgement} | |
451 | + | |
452 | +This work is supported by the ANR Programme d'Investissement d'Avenir in | |
453 | +progress at the Time and Frequency Departments of the FEMTO-ST Institute | |
454 | +(Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. | |
455 | +The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila | |
456 | +for support and fruitful discussions. | |
457 | + | |
458 | +\bibliographystyle{IEEEtran} | |
459 | +\balance | |
460 | +\bibliography{references,biblio} | |
461 | +\end{document} |
images/custom_criterion.pdf
No preview for this file type
images/max_rejection/prn_1000.pdf
No preview for this file type
images/max_rejection/prn_2000.pdf
No preview for this file type
images/max_rejection/prn_500.pdf
No preview for this file type
images/mean_criterion.pdf
No preview for this file type
images/min_area/prn_100.pdf
No preview for this file type
images/min_area/prn_150.pdf
No preview for this file type
images/min_area/prn_50.pdf
No preview for this file type
images/sum_rejection.pdf
No preview for this file type