Compare View

switch
from
...
to
 
Commits (2)

Diff

Showing 17 changed files Side-by-side Diff

... ... @@ -24,4 +24,12 @@ ifcs2018_journal.log
24 24 ifcs2018_journal.out
25 25 ifcs2018_journal.pdf
26 26  
  27 +ifcs2018_journal_reponse.aux
  28 +ifcs2018_journal_reponse.log
  29 +ifcs2018_journal_reponse.pdf
  30 +
  31 +cover.aux
  32 +cover.log
  33 +cover.pdf
  34 +
27 35 *.bak
... ... @@ -34,6 +34,10 @@ $(TARGET)_journal: $(TARGET)_journal.tex references.bib biblio.bib
34 34 $(TEX) $@.tex
35 35 $(TEX) $@.tex
36 36  
  37 +$(TARGET)_journal_reponse: $(TARGET)_journal_reponse.tex references.bib biblio.bib
  38 + $(TEX) $@.tex
  39 + $(TEX) $@.tex
  40 +
37 41 clean:
38 42 rm -f $(TARGET)_abstract.aux $(TARGET)_abstract.log $(TARGET)_abstract.out $(TARGET)_abstract.bbl $(TARGET)_abstract.blg
39 43 rm -f $(TARGET)_poster.aux $(TARGET)_poster.log $(TARGET)_poster.out
ifcs2018_journal.tex
... ... @@ -23,6 +23,8 @@
23 23 \usetikzlibrary{positioning,fit}
24 24 \usepackage{multirow}
25 25 \usepackage{scalefnt}
  26 +\usepackage{caption}
  27 +\usepackage{subcaption}
26 28  
27 29 % correct bad hyphenation here
28 30 \hyphenation{op-tical net-works semi-conduc-tor}
... ... @@ -35,8 +37,8 @@ to oscillator metrology}
35 37  
36 38 \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
37 39 G. Goavec-M\'erou\IEEEauthorrefmark{1},
38   -P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
39   -\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
  40 +P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}\\
  41 +\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }\\
40 42 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
41 43 Email: \{pyb2,jmfriedt\}@femto-st.fr}
42 44 }
... ... @@ -280,17 +282,20 @@ the stopband the last 40\%, allowing 20\% transition width.}
280 282 \end{figure}
281 283  
282 284 In the transition band, the behavior of the filter is left free, we only care about the passband and the stopband characteristics.
283   -Our initial criterion considered the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion
284   -yields unacceptable results since notches overestimate the rejection capability of the filter. Furthermore, the losses within
285   -the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients.
286   -Such biases are compensated for by the second considered criterion which is based on computing the maximum rejection within the stopband minus the mean of the absolute value of passband rejection. With this criterion, the results are significantly improved as shown in figure~\ref{fig:custom_criterion} and meet the expected rejection capability of low pass filters.
287   -
288   -\begin{figure}
289   -\centering
290   -\includegraphics[width=\linewidth]{images/colored_mean_criterion}
291   -\caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters}
292   -\label{fig:mean_criterion}
293   -\end{figure}
  285 +% r2.7
  286 +% Our initial criterion considered the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion
  287 +% yields unacceptable results since notches overestimate the rejection capability of the filter. Furthermore, the losses within
  288 +% the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients.
  289 +Our criterion to compute the filter rejection takes
  290 +% r2.8 et r2.2 r2.3
  291 +the maximum magnitude within the stopband minus the sum of the absolute value of passband rejection. With this criterion, we meet the expected rejection capability of low pass filters as shown in figure~\ref{fig:custom_criterion}.
  292 +
  293 +% \begin{figure}
  294 +% \centering
  295 +% \includegraphics[width=\linewidth]{images/colored_mean_criterion}
  296 +% \caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters}
  297 +% \label{fig:mean_criterion}
  298 +% \end{figure}
294 299  
295 300 \begin{figure}
296 301 \centering
... ... @@ -324,9 +329,11 @@ the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_r
324 329 are two different filters with maximums and notches not located at the same frequency offsets.
325 330 Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved
326 331 with respect to a basic sum of the rejection criteria shown as a the dotted yellow line.
327   -Thus, estimating the rejection of filter cascades is more complex than takin the sum of all the rejection
  332 +% r2.9
  333 +Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection
328 334 criteria of each filter. However since the this sum underestimates the rejection capability of the cascade,
329   -this upper bound is considered as a pessimistic and acceptable criterion for deciding on the suitability
  335 +% r2.10
  336 +this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability
330 337 of the filter cascade to meet design criteria.
331 338  
332 339 \begin{figure}
... ... @@ -336,8 +343,14 @@ of the filter cascade to meet design criteria.
336 343 \label{fig:sum_rejection}
337 344 \end{figure}
338 345  
  346 +% r2.6
  347 +Finally in our case, we consider that the input signal are fully known. So the
  348 +resolution of the data stream are fixed and still the same for all experiments
  349 +in this paper.
  350 +
339 351 Based on this analysis, we address the estimate of resource consumption (called
340   -silicon area -- in the case of FPGAs meaning processing cells) as a function of
  352 +% r2.11
  353 +silicon area -- in the case of FPGAs this means processing cells) as a function of
341 354 filter characteristics. As a reminder, we do not aim at matching actual hardware
342 355 configuration but consider an arbitrary silicon area occupied by each processing function,
343 356 and will assess after synthesis the adequation of this arbitrary unit with actual
... ... @@ -383,7 +396,12 @@ Finally, equation~\ref{eq:init} gives the number of bits of the global input.
383 396  
384 397 This model is non-linear and even non-quadratic, as $F$ does not have a known
385 398 linear or quadratic expression. We introduce $p$ FIR configurations
386   -$(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants. We define binary
  399 +$(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants.
  400 +% r2.12
  401 +This variable must be defined by the user, it represent the number of different
  402 +set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1}
  403 +functions from GNU Octave).
  404 +We define binary
387 405 variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
388 406 and 0 otherwise. The new equations are as follows:
389 407  
... ... @@ -398,7 +416,10 @@ Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
398 416 respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
399 417 Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
400 418  
401   -This modified model is quadratic, and it can be linearised if necessary. The Gurobi
  419 +% r2.13
  420 +This modified model is quadratic since we multiply two variables in the
  421 +equation~\ref{eq:areadef2} ($\delta_{ij}$ by $\pi_{ij}^-$) but it can be linearised if necessary.
  422 +The Gurobi
402 423 (\url{www.gurobi.com}) optimization software is used to solve this quadratic
403 424 model, and since Gurobi is able to linearize, the model is left as is. This model
404 425 has $O(np)$ variables and $O(n)$ constraints.
... ... @@ -602,25 +623,48 @@ Figure~\ref{fig:max_500_result} shows the rejection of the different configurati
602 623 Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000.
603 624 Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500.
604 625  
  626 +% \begin{figure}
  627 +% \centering
  628 +% \includegraphics[width=\linewidth]{images/max_500}
  629 +% \caption{Signal spectrum for MAX/500}
  630 +% \label{fig:max_500_result}
  631 +% \end{figure}
  632 +%
  633 +% \begin{figure}
  634 +% \centering
  635 +% \includegraphics[width=\linewidth]{images/max_1000}
  636 +% \caption{Signal spectrum for MAX/1000}
  637 +% \label{fig:max_1000_result}
  638 +% \end{figure}
  639 +%
  640 +% \begin{figure}
  641 +% \centering
  642 +% \includegraphics[width=\linewidth]{images/max_1500}
  643 +% \caption{Signal spectrum for MAX/1500}
  644 +% \label{fig:max_1500_result}
  645 +% \end{figure}
  646 +
  647 +% r2.14 et r2.15 et r2.16
605 648 \begin{figure}
606   -\centering
607   -\includegraphics[width=\linewidth]{images/max_500}
608   -\caption{Signal spectrum for MAX/500}
609   -\label{fig:max_500_result}
610   -\end{figure}
611   -
612   -\begin{figure}
613   -\centering
614   -\includegraphics[width=\linewidth]{images/max_1000}
615   -\caption{Signal spectrum for MAX/1000}
616   -\label{fig:max_1000_result}
617   -\end{figure}
618   -
619   -\begin{figure}
620   -\centering
621   -\includegraphics[width=\linewidth]{images/max_1500}
622   -\caption{Signal spectrum for MAX/1500}
623   -\label{fig:max_1500_result}
  649 + \centering
  650 + \begin{subfigure}{\linewidth}
  651 + \includegraphics[width=\linewidth]{images/max_500}
  652 + \caption{Signal spectrum for MAX/500}
  653 + \label{fig:max_500_result}
  654 + \end{subfigure}
  655 +
  656 + \begin{subfigure}{\linewidth}
  657 + \includegraphics[width=\linewidth]{images/max_1000}
  658 + \caption{Signal spectrum for MAX/1000}
  659 + \label{fig:max_1000_result}
  660 + \end{subfigure}
  661 +
  662 + \begin{subfigure}{\linewidth}
  663 + \includegraphics[width=\linewidth]{images/max_1500}
  664 + \caption{Signal spectrum for MAX/1500}
  665 + \label{fig:max_1500_result}
  666 + \end{subfigure}
  667 + \caption{Signal spectrum of each experimental configurations MAX/500, MAX/1000 and MAX/1500}
624 668 \end{figure}
625 669  
626 670 In all cases, we observe that the actual rejection is close to the rejection computed by the solver.
... ... @@ -827,32 +871,61 @@ Figure~\ref{fig:min_60} shows the rejection of the different configurations in t
827 871 Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80.
828 872 Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100.
829 873  
  874 +% \begin{figure}
  875 +% \centering
  876 +% \includegraphics[width=\linewidth]{images/min_40}
  877 +% \caption{Signal spectrum for MIN/40}
  878 +% \label{fig:min_40}
  879 +% \end{figure}
  880 +%
  881 +% \begin{figure}
  882 +% \centering
  883 +% \includegraphics[width=\linewidth]{images/min_60}
  884 +% \caption{Signal spectrum for MIN/60}
  885 +% \label{fig:min_60}
  886 +% \end{figure}
  887 +%
  888 +% \begin{figure}
  889 +% \centering
  890 +% \includegraphics[width=\linewidth]{images/min_80}
  891 +% \caption{Signal spectrum for MIN/80}
  892 +% \label{fig:min_80}
  893 +% \end{figure}
  894 +%
  895 +% \begin{figure}
  896 +% \centering
  897 +% \includegraphics[width=\linewidth]{images/min_100}
  898 +% \caption{Signal spectrum for MIN/100}
  899 +% \label{fig:min_100}
  900 +% \end{figure}
  901 +
  902 +% r2.14 et r2.15 et r2.16
830 903 \begin{figure}
831   -\centering
832   -\includegraphics[width=\linewidth]{images/min_40}
833   -\caption{Signal spectrum for MIN/40}
834   -\label{fig:min_40}
835   -\end{figure}
836   -
837   -\begin{figure}
838   -\centering
839   -\includegraphics[width=\linewidth]{images/min_60}
840   -\caption{Signal spectrum for MIN/60}
841   -\label{fig:min_60}
842   -\end{figure}
843   -
844   -\begin{figure}
845   -\centering
846   -\includegraphics[width=\linewidth]{images/min_80}
847   -\caption{Signal spectrum for MIN/80}
848   -\label{fig:min_80}
849   -\end{figure}
850   -
851   -\begin{figure}
852   -\centering
853   -\includegraphics[width=\linewidth]{images/min_100}
854   -\caption{Signal spectrum for MIN/100}
855   -\label{fig:min_100}
  904 + \centering
  905 + \begin{subfigure}{\linewidth}
  906 + \includegraphics[width=\linewidth]{images/min_40}
  907 + \caption{Signal spectrum for MIN/40}
  908 + \label{fig:min_40}
  909 + \end{subfigure}
  910 +
  911 + \begin{subfigure}{\linewidth}
  912 + \includegraphics[width=\linewidth]{images/min_60}
  913 + \caption{Signal spectrum for MIN/60}
  914 + \label{fig:min_60}
  915 + \end{subfigure}
  916 +
  917 + \begin{subfigure}{\linewidth}
  918 + \includegraphics[width=\linewidth]{images/min_80}
  919 + \caption{Signal spectrum for MIN/80}
  920 + \label{fig:min_80}
  921 + \end{subfigure}
  922 +
  923 + \begin{subfigure}{\linewidth}
  924 + \includegraphics[width=\linewidth]{images/min_100}
  925 + \caption{Signal spectrum for MIN/100}
  926 + \label{fig:min_100}
  927 + \end{subfigure}
  928 + \caption{Signal spectrum of each experimental configurations MIN/40, MIN/60, MIN/80 and MIN/100}
856 929 \end{figure}
857 930  
858 931 We observe that all rejections given by the quadratic solver are close to the experimentally
ifcs2018_journal_reponse.tex
1 1 %Minor Revision - TUFFC-09469-2019
2   -%Transactions on Ultrasonics, Ferroelectrics, and Frequency
  2 +%Transactions on Ultrasonics, Ferroelectrics, and Frequency
3 3 %Control (July 23, 2019 9:29 PM)
4   -%To: arthur.hugeat@femto-st.fr, julien.bernard@femto-st.fr,
5   -%gwenhael.goavec@femto-st.fr, pyb2@femto-st.fr, pierre-yves.bourgeois@femto-st.fr,
  4 +%To: arthur.hugeat@femto-st.fr, julien.bernard@femto-st.fr,
  5 +%gwenhael.goavec@femto-st.fr, pyb2@femto-st.fr, pierre-yves.bourgeois@femto-st.fr,
6 6 %jmfriedt@femto-st.fr
7 7 %CC: giorgio.santarelli@institutoptique.fr, lewin@ece.drexel.edu
8 8 %
... ... @@ -12,56 +12,56 @@
12 12 %
13 13 %MANUSCRIPT NO. TUFFC-09469-2019
14 14 %MANUSCRIPT TYPE: Papers
15   -%TITLE: Filter optimization for real time digital processing of radiofrequency
  15 +%TITLE: Filter optimization for real time digital processing of radiofrequency
16 16 %signals: application to oscillator metrology
17   -%AUTHOR(S): HUGEAT, Arthur; BERNARD, Julien; Goavec-Mérou, Gwenhaël; Bourgeois,
  17 +%AUTHOR(S): HUGEAT, Arthur; BERNARD, Julien; Goavec-Mérou, Gwenhaël; Bourgeois,
18 18 %Pierre-Yves; Friedt, Jean-Michel
19 19 %
20   -%has been reviewed and it has been suggested that it be accepted for publication
21   -%after minor revisions. In your revision, you must respond to the reviewer’s
  20 +%has been reviewed and it has been suggested that it be accepted for publication
  21 +%after minor revisions. In your revision, you must respond to the reviewer’s
22 22 %comments at the end of this e-mail or attached.
23 23 %
24   -%Your revised manuscript must be submitted within the next THREE WEEKS. If you
25   -%are not able to submit your manuscript in this time frame, you must contact the
  24 +%Your revised manuscript must be submitted within the next THREE WEEKS. If you
  25 +%are not able to submit your manuscript in this time frame, you must contact the
26 26 %Editor in Chief (Peter Lewin, lewinpa@drexel.edu).
27 27 %
28   -%Please resubmit your revised manuscript to the Transactions on Ultrasonics,
29   -%Ferroelectrics, and Frequency Control Manuscript Central website at
30   -%http://mc.manuscriptcentral.com/tuffc-ieee. From the “Author Center” select
31   -%“Manuscripts with Decisions” and under the appropriate manuscript ID select
  28 +%Please resubmit your revised manuscript to the Transactions on Ultrasonics,
  29 +%Ferroelectrics, and Frequency Control Manuscript Central website at
  30 +%http://mc.manuscriptcentral.com/tuffc-ieee. From the “Author Center” select
  31 +%“Manuscripts with Decisions” and under the appropriate manuscript ID select
32 32 %“create a revision”.
33 33 %
34 34 %To expedite the review of your resubmission:
35 35 %
36   -%(1) Include or attach a point by point response to reviewer’s comments and
37   -%detail all changes made in your manuscript under “Response to Decision Letter”.
38   -%Failure to address reviewers comments can still lead to a rejection of your
  36 +%(1) Include or attach a point by point response to reviewer’s comments and
  37 +%detail all changes made in your manuscript under “Response to Decision Letter”.
  38 +%Failure to address reviewers comments can still lead to a rejection of your
39 39 %manuscript.
40   -%(2) Submit a PDF of the revised manuscript using the “Formatted (Double Column)
41   -%Main File - PDF Document Only” file type with all changes highlighted in yellow
  40 +%(2) Submit a PDF of the revised manuscript using the “Formatted (Double Column)
  41 +%Main File - PDF Document Only” file type with all changes highlighted in yellow
42 42 %under “File Upload”.
43   -%(3) Original TeX, LaTeX, or Microsoft Word file of the final manuscript as
  43 +%(3) Original TeX, LaTeX, or Microsoft Word file of the final manuscript as
44 44 %Supporting Document.
45   -%(4) High quality source files of your figures in Word, Tiff, Postscript,
46   -%EPS, Excel or Power Point (if figures are not already embedded in your source
  45 +%(4) High quality source files of your figures in Word, Tiff, Postscript,
  46 +%EPS, Excel or Power Point (if figures are not already embedded in your source
47 47 %file above) as Supporting Document.
48 48 %(5) Author photos and biographies (papers only) as Supporting Document.
49   -%(6) Graphical Abstract to accompany your text abstract on IEEE Xplore (image,
  49 +%(6) Graphical Abstract to accompany your text abstract on IEEE Xplore (image,
50 50 %animation, movie, or audio clip) uploaded as Multimedia.
51 51 %
52   -%*Please make sure that all final files have unique file names in order for
  52 +%*Please make sure that all final files have unique file names in order for
53 53 %them to be processed correctly by IEEE*
54   -%Please note that a PDF is NOT sufficient for publication, the PDF is used
  54 +%Please note that a PDF is NOT sufficient for publication, the PDF is used
55 55 %for review.
56 56 %
57   -%During the resubmission process if you do not see a confirmation screen and
58   -%receive a confirmation e-mail, your revised manuscript was not transmitted
  57 +%During the resubmission process if you do not see a confirmation screen and
  58 +%receive a confirmation e-mail, your revised manuscript was not transmitted
59 59 %to us and we will not be able to continue to process your manuscript.
60 60 %
61   -%Please refer to the policies regarding the voluntary page charges and
62   -%mandatory page charges in the "Guideline for Authors" at
  61 +%Please refer to the policies regarding the voluntary page charges and
  62 +%mandatory page charges in the "Guideline for Authors" at
63 63 %http://ieee-uffc.org/publications/transactions-on-uffc/information-for-authors
64   -%Note over-length charge of US$175 per page is applied for published pages in
  64 +%Note over-length charge of US$175 per page is applied for published pages in
65 65 %excess of 8 pages.
66 66 %
67 67 %Sincerely,
... ... @@ -82,22 +82,22 @@
82 82 %In general, the language/grammar is adequate.
83 83  
84 84 {\bf
85   -On page 2, "...allowing to save processing resource..." could be improved.
  85 +On page 2, "...allowing to save processing resource..." could be improved. % r1.1
86 86  
87   -On page 2, "... or thanks at a radiofrequency-grade..." isn't at all clear what
  87 +On page 2, "... or thanks at a radiofrequency-grade..." isn't at all clear what % r1.2
88 88 the author meant.
89 89  
90   -One page 2, the whole paragraph "The first step of our approach is to model..."
  90 +One page 2, the whole paragraph "The first step of our approach is to model..." % r1.3
91 91 could be improved.
92 92 }
93 93  
94 94 {\bf
95   -I appreciate that the authors attempted and document two optimizations: that
96   -of maximum rejection ratio at fixed silicon area, as well as minimum silicon
97   -area for a fixed minimum rejection ratio. For non-experts, it might be very
98   -useful to compare the results of both optimization paths to the performance and
99   -resource-utilization of generic low-pass filter gateware offered by device
100   -manufacturers. I appreciate also that the authors have presented source code
  95 +I appreciate that the authors attempted and document two optimizations: that % r1.4 - en attente des résultats
  96 +of maximum rejection ratio at fixed silicon area, as well as minimum silicon
  97 +area for a fixed minimum rejection ratio. For non-experts, it might be very
  98 +useful to compare the results of both optimization paths to the performance and
  99 +resource-utilization of generic low-pass filter gateware offered by device
  100 +manufacturers. I appreciate also that the authors have presented source code
101 101 for examination online.
102 102 }
103 103  
... ... @@ -109,34 +109,34 @@ Reviewer: 2
109 109 }
110 110  
111 111 %Comments to the Author
112   -%In the Manuscript, the Authors describe an optimization methodology for filter
113   -%design to be used in phase noise metrology. The methodology is general and can
114   -%be used for many aspects of the processing chain. In the Manuscript, the Authors
115   -%focus on filtering and shifting while the other aspects, in particular decimation,
116   -%will be considered in a future work. The optimization problem is modelled
117   -%theoretically and then solved by means of a commercial software. The solutions
118   -%are tested experimentally on the Redpitaya platform with synthetic and real
119   -%white noises. Two cases are considered as a function of the number of filters:
120   -%maximum rejection given a fixed amount of resources and minimum resource
121   -%utilization given a fixed amount of rejection.
122   -%The Authors find that filtering improves significantly when the number of
123   -%filters increases.
124   -%A lot of work has been done in generalizing and automating the procedure so
125   -%that different approaches can be investigated quickly and efficiently. The
126   -%results presented in the Manuscript seem to be just a case study based on
127   -%the particular criterion chosen by the Authors. Different criteria, in
128   -%general, could lead to different results and it is important to consider
129   -%carefully the criterion adopted by the Authors, in order to check if it
130   -%is adequate to compare the performance of filters and if multi-stage
  112 +%In the Manuscript, the Authors describe an optimization methodology for filter
  113 +%design to be used in phase noise metrology. The methodology is general and can
  114 +%be used for many aspects of the processing chain. In the Manuscript, the Authors
  115 +%focus on filtering and shifting while the other aspects, in particular decimation,
  116 +%will be considered in a future work. The optimization problem is modelled
  117 +%theoretically and then solved by means of a commercial software. The solutions
  118 +%are tested experimentally on the Redpitaya platform with synthetic and real
  119 +%white noises. Two cases are considered as a function of the number of filters:
  120 +%maximum rejection given a fixed amount of resources and minimum resource
  121 +%utilization given a fixed amount of rejection.
  122 +%The Authors find that filtering improves significantly when the number of
  123 +%filters increases.
  124 +%A lot of work has been done in generalizing and automating the procedure so
  125 +%that different approaches can be investigated quickly and efficiently. The
  126 +%results presented in the Manuscript seem to be just a case study based on
  127 +%the particular criterion chosen by the Authors. Different criteria, in
  128 +%general, could lead to different results and it is important to consider
  129 +%carefully the criterion adopted by the Authors, in order to check if it
  130 +%is adequate to compare the performance of filters and if multi-stage
131 131 %filters are really superior than monolithic filters.
132 132  
133 133 {\bf
134   -By observing the results presented in fig. 10-16, it is clear that the
135   -performances of multi-stage filters are obtained at the expense of their
136   -selectivity and, in this sense, the filters presented in these figures
137   -are not equivalent. For example, in Fig. 14, at the limit of the pass band,
138   -the attenuation is almost 15 dB for n = 5, while it is not noticeable for
139   -n = 1.
  134 +By observing the results presented in fig. 10-16, it is clear that the % r2.1 - fait
  135 +performances of multi-stage filters are obtained at the expense of their
  136 +selectivity and, in this sense, the filters presented in these figures
  137 +are not equivalent. For example, in Fig. 14, at the limit of the pass band,
  138 +the attenuation is almost 15 dB for n = 5, while it is not noticeable for
  139 +n = 1.
140 140 }
141 141  
142 142 TODO : ajouter les gabarits
... ... @@ -145,14 +145,16 @@ Peut etre refaire une serie de simulation dans lesquelles on impose une coupure
145 145 non pas entre 40 et 60\% mais entre 50 et 60\% pour demontrer que l'outil s'adapte
146 146 au critere qu'on lui impose, et que la coupure moins raide n'est pas intrinseque
147 147 a la cascade de filtres.
  148 +AH: Je finis les corrections, je poste l'article revu et pendant ce temps j'essaie de
  149 +relancer des expérimentations. Si j'arrive à les finir à temps, je les intégrerai
148 150  
149 151 {\bf
150   -The reason is in the criterion that considers the average attenuation in
151   -the pass band. This criterion does not take into account the maximum attenuation
152   -in this region, which is a very important parameter for specifying a filter
153   -and for evaluating its performance. For example, with this criterion, a
154   -filter with 0.1 dB of ripple is considered equivalent to a filter with
155   -10 dB of ripple. This point has a strong impact in the optimization process
  152 +The reason is in the criterion that considers the average attenuation in % r2.2 - fait
  153 +the pass band. This criterion does not take into account the maximum attenuation
  154 +in this region, which is a very important parameter for specifying a filter
  155 +and for evaluating its performance. For example, with this criterion, a
  156 +filter with 0.1 dB of ripple is considered equivalent to a filter with
  157 +10 dB of ripple. This point has a strong impact in the optimization process
156 158 and in the results that are obtained and has to be reconsidered.
157 159 }
158 160  
... ... @@ -160,54 +162,67 @@ Je ne pense pas que ca soit le cas : la somme des valeurs absolues des pertes
160 162 dans la bande va defavoriser un filtre avec 10 dB de ripples. Il n'a pas compris que
161 163 la bandpass s'arrete a 40\% de la bande, donc mettre le gabarit clarifierait ce point je
162 164 pense
  165 +AH: Il y avait une faute, j'avais mis "mean of absolute value" au lieu de "sum of absolute value". Je pense que je n'ai pas besoin de mettre plus de détail ?
163 166  
164 167 {\bf
165   -I strongly suggest to re-run the analysis with a criterion that takes also
166   -into account the maximum allowed attenuation in pass band, for example by
167   -fixing its value to a typical one, as it has been done for the transition
168   -bandwidth.
  168 +I strongly suggest to re-run the analysis with a criterion that takes also % r2.3 -fait
  169 +into account the maximum allowed attenuation in pass band, for example by
  170 +fixing its value to a typical one, as it has been done for the transition
  171 +bandwidth.
169 172 }
  173 +AH: Il y avait une faute, j'avais mis "mean of absolute value" au lieu de "sum of absolute value". Je pense que je n'ai pas besoin de mettre plus de détail ?
170 174  
171 175 {\bf
172   -In addition, I suggest to address the following points:
173   -- Page 1, line 50: the Authors state that IIR have shorter impulse response
  176 +In addition, I suggest to address the following points: % r2.4
  177 +- Page 1, line 50: the Authors state that IIR have shorter impulse response
174 178 than FIR. This is not true in general. The sentence should be reconsidered.
175 179 }
176 180  
177 181 J'aurais du dire ``lag'' au lieu de ``impulse response'' je pense
  182 +AH: Je ne comprends pas trop ce qui ne va pas ici
178 183  
179 184 {\bf
180   -- Fig. 4: the Author should motivate in the text why it has been chosen
181   -this transition bandwidth and if it is a typical requirement for phase-noise
  185 +- Fig. 4: the Author should motivate in the text why it has been chosen % r2.5
  186 +this transition bandwidth and if it is a typical requirement for phase-noise
182 187 metrology.
183   -- The impact of the coefficient resolution is discussed. What about the
184   -resolution of the data stream? Is it fixed? If so, which value has been
185   -used in the analysis? If not, how is it changed with respect to the
  188 +}
  189 +AH: Je ne sais pas comment justifier ça. Je dois dire que comme ça on peut éventuellement
  190 +décimer par deux le flux ?
  191 +
  192 +{\bf
  193 +- The impact of the coefficient resolution is discussed. What about the % r2.6 - fait
  194 +resolution of the data stream? Is it fixed? If so, which value has been
  195 +used in the analysis? If not, how is it changed with respect to the
186 196 coefficient resolution?
187 197 }
188 198  
189 199 Pr\'eciser que le flux de donn\'ees en entr\'ees est de r\'esolution fixe
190 200  
191 201 {\bf
192   -- Page 3, line 47: the initial criterion can be omitted and, consequently,
  202 +- Page 3, line 47: the initial criterion can be omitted and, consequently, % r2.7 - fait
193 203 Fig. 5 can be removed.
194   -- Page 3, line 55: “maximum rejection” is not compatible with fig. 4.
  204 +- Page 3, line 55: “maximum rejection” is not compatible with fig. 4. % r2.8 - fait
195 205 It should be “minimum”
196   -- Page e, line 55, second column: “takin”
197   -- Page 3, line 58: “pessimistic” should be replaced with “conservative”
198   -- Page 4, line 17: “meaning” --> “this means”
199   -- Page 4, line 10: how $p$ is chosen? Which is the criterion used to choose
  206 +}
  207 +AH: Je ne suis pas d'accord, le critère n'est pas le min de la rejection mais le max
  208 +de la magnitude. J'ai corrigé en ce sens.
  209 +
  210 +{\bf
  211 +- Page e, line 55, second column: “takin” % r2.9 - fait
  212 +- Page 3, line 58: “pessimistic” should be replaced with “conservative” % r2.10 - fait
  213 +- Page 4, line 17: “meaning” --> “this means” % r2.11 - fait
  214 +- Page 4, line 10: how $p$ is chosen? Which is the criterion used to choose % r2.12 - fait
200 215 these particular configurations? Are they chosen automatically?
201   -- Page 4, line 31: how does the delta function transform model from non-linear
  216 +- Page 4, line 31: how does the delta function transform model from non-linear % r2.13 - fait
202 217 and non-quadratic to a quadratic?
203   -- Captions of figure and tables are too minimal.
204   -- Figures can be grouped: fig. 10-12 can be grouped as three subplots (a, b, c)
205   -of a single figure. Same for fig. 13-16.
  218 +- Captions of figure and tables are too minimal. % r2.14
  219 +- Figures can be grouped: fig. 10-12 can be grouped as three subplots (a, b, c) % r2.15 - fait
  220 +of a single figure. Same for fig. 13-16.
206 221 }
207 222  
208 223 {\bf
209   -- Please increase the number of averages for the spectrum. Currently the noise
210   -of the curves is about 20 dBpk-pk and it doesn’t allow to appreciate the
  224 +- Please increase the number of averages for the spectrum. Currently the noise % r2.16 - fait
  225 +of the curves is about 20 dBpk-pk and it doesn’t allow to appreciate the
211 226 differences among the curves. I suggest to reduce the noise below 1 dBpk-pk.
212 227 }
213 228  
... ... @@ -216,14 +231,13 @@ mais que tu as des jeux de donnees de e.g. 10000 points, on peut faire des moyen
216 231 sur les sequences successives. Au pire si pas possible, une moyenne glissante sur
217 232 chaque spectre pour affiner les traits ?
218 233  
219   -%In conclusion, my opinion is that the methodology presented in the Manuscript
220   -%deserve to be published, provided that the criterion is changed according
  234 +%In conclusion, my opinion is that the methodology presented in the Manuscript
  235 +%deserve to be published, provided that the criterion is changed according
221 236 %the indications mentioned above.
222 237 \end{document}
223 238 %****************************************************
224 239 %
225   -%For information about the IEEE Ultrasonics, Ferroelectrics, and Frequency
226   -%Control Society, please visit the website: http://www.ieee-uffc.org. The
227   -%website of the Transactions on Ultrasonics, Ferroelectrics, and Frequency
  240 +%For information about the IEEE Ultrasonics, Ferroelectrics, and Frequency
  241 +%Control Society, please visit the website: http://www.ieee-uffc.org. The
  242 +%website of the Transactions on Ultrasonics, Ferroelectrics, and Frequency
228 243 %Control is at: http://ieee-uffc.org/publications/transactions-on-uffc
229   -
images/cascaded_criterion.pdf
No preview for this file type
images/colored_custom_criterion.pdf
No preview for this file type
images/colored_mean_criterion.pdf
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
images/rejection_pyramid.pdf
No preview for this file type
images/zero_values.pdf
No preview for this file type
No preview for this file type