Commit cbca8b45674b2f43778f1e606d4cf6044b214699

Authored by jfriedt
1 parent b0ed3be3ee
Exists in master

template d'article

Showing 1 changed file with 669 additions and 0 deletions Inline Diff

ifcs2018_article.tex
File was created 1 % fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee
2 % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de
3 % rejection par bit et perte si moins de bits que rejection/6
4 % developper programme lineaire en incluant le decalage de bits
5 % insister que avant on etait synthetisable mais pas implementable, alors que maintenant on
6 % implemente et on demontre que ca tourne
7 % gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ?
8 % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer
9 % (zedboard ou redpit)
10
11 \documentclass[a4paper,transaction]{IEEEtran/IEEEtran}
12 \usepackage{graphicx,color,hyperref}
13 \usepackage{amsfonts}
14 \usepackage{amsthm}
15 \usepackage{amssymb}
16 \usepackage{amsmath}
17 \usepackage{algorithm2e}
18 \usepackage{url,balance}
19 \usepackage[normalem]{ulem}
20 % correct bad hyphenation here
21 \hyphenation{op-tical net-works semi-conduc-tor}
22 \textheight=26cm
23 \setlength{\footskip}{30pt}
24 \pagenumbering{gobble}
25 \begin{document}
26 \title{Filter optimization for real time digital processing of radiofrequency signals: application
27 to oscillator metrology}
28
29 \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
30 G. Goavec-M\'erou\IEEEauthorrefmark{1},
31 P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
32 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
33 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
34 Email: \{pyb2,jmfriedt\}@femto-st.fr}
35 }
36 \maketitle
37 \thispagestyle{plain}
38 \pagestyle{plain}
39 \newtheorem{definition}{Definition}
40
41 \begin{abstract}
42 Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
43 radiofrequency signal processing. Applied to oscillator characterization in the context
44 of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
45 noise rejection needs. Since real time radiofrequency processing must be performed in a
46 Field Programmable Array to meet timing constraints, we investigate optimization strategies
47 to design filters meeting rejection characteristics while limiting the hardware resources
48 required and keeping timing constraints within the targeted measurement bandwidths.
49 \end{abstract}
50
51 \begin{IEEEkeywords}
52 Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
53 \end{IEEEkeywords}
54
55 \section{Digital signal processing of ultrastable clock signals}
56
57 Analog oscillator phase noise characteristics are classically performed by downconverting
58 the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
59 followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
60 a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
61 multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
62
63 \begin{figure}[h!tb]
64 \begin{center}
65 \includegraphics[width=.8\linewidth]{schema}
66 \end{center}
67 \caption{Fully digital oscillator phase noise characterization: the Device Under Test
68 (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
69 downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
70 and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
71 Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
72 the spectral characteristics of the phase fluctuations.}
73 % JMF : argumenter de la cascade de FIR
74 \label{schema}
75 \end{figure}
76
77 As with the analog mixer,
78 the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
79 well as the generation of the frequency sum signal in addition to the frequency difference.
80 These unwanted spectral characteristics must be rejected before decimating the data stream
81 for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
82 downconverter
83 and the decimation processing blocks are core characteristics of an oscillator characterization
84 system, and must reject out-of-band signals below the targeted phase noise -- typically in the
85 sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
86 use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
87 datastream: optimizing the performance of the filter while reducing the needed resources is
88 hence tackled in a systematic approach using optimization techniques. Most significantly, we
89 tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
90 tunable number of coefficients and tunable number of bits representing the coefficients and the
91 data being processed.
92
93 \section{Finite impulse response filter}
94
95 We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined
96 by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
97 outputs $y_k$
98 $$y_n=\sum_{k=0}^N b_k x_{n-k}$$
99
100 As opposed to an implementation on a general purpose processor in which word size is defined by the
101 processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since
102 not only the coefficient values and number of taps must be defined, but also the number of bits
103 defining the coefficients and the sample size. For this reason, and because we consider pipeline
104 processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
105 signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
106 the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level.
107 Since latency is not an issue in a openloop phase noise characterization instrument, the large
108 numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
109 is not considered as an issue as would be in a closed loop system.
110
111 The coefficients are classically expressed as floating point values. However, this binary
112 number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
113 we select to quantify these floating point values into integer values. This quantization
114 will result in some precision loss.
115
116 %As illustrated in Fig. \ref{float_vs_int}, we see that we aren't
117 %need too coefficients or too sample size. If we have lot of coefficients but a small sample size,
118 %the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality.
119
120 % JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous
121 % AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi)
122 % et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler
123
124 %\begin{figure}[h!tb]
125 %\includegraphics[width=\linewidth]{images/float-vs-integer.pdf}
126 %\caption{Impact of the quantization resolution of the coefficients}
127 %\label{float_vs_int}
128 %\end{figure}
129
130 \begin{figure}[h!tb]
131 \includegraphics[width=\linewidth]{images/demo_filtre}
132 \caption{Impact of the quantization resolution of the coefficients: the quantization is
133 set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
134 the 30~first and 30~last coefficients out of the initial 128~band-pass
135 filter coefficients to 0 (red dots).}
136 \label{float_vs_int}
137 \end{figure}
138
139 The tradeoff between quantization resolution and number of coefficients when considering
140 integer operations is not trivial. As an illustration of the issue related to the
141 relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
142 a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
143 quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
144 taps become null, making the large number of coefficients irrelevant and allowing to save
145 processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources
146 to reach a given rejection level, or maximizing out of band rejection for a given computational
147 resource, will drive the investigation on cascading filters designed with varying tap resolution
148 and tap length, as will be shown in the next section. Indeed, our development strategy closely
149 follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
150 in which basic blocks are defined and characterized before being assembled \cite{hide}
151 in a complete processing chain. In our case, assembling the filter blocks is a simpler block
152 combination process since we assume a single value to be processed and a single value to be
153 generated at each clock cycle. The FIR filters will not be considered to decimate in the
154 current implementation: the decimation is assumed to be located after the FIR cascade at the
155 moment.
156
157 \section{Filter optimization}
158
159 A basic approach for implementing the FIR filter is to compute the transfer function of
160 a monolithic filter: this single filter defines all coefficients with the same resolution
161 (number of bits) and processes data represented with their own resolution. Meeting the
162 filter shape requires a large number of coefficients, limited by resources of the FPGA since
163 this filter must process data stream at the radiofrequency sampling rate after the mixer.
164
165 An optimization problem \cite{leung2004handbook} aims at improving one or many
166 performance criteria within a constrained resource environment. Amongst the tools
167 developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to
168 formally define the stated problem and search for an optimal use of available
169 resources \cite{yu2007design, kodek1980design}.
170
171 First we need to ensure that our problem is a real optimization problem. When
172 designing a processing function in the FPGA, we aim at meeting some requirement such as
173 the throughput, the computation time or the noise rejection noise. However, due to limited
174 resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor)
175 or LUT (Look Up Table), a tradeoff must be generally searched between performance and available
176 computational resources: optimizing some criteria within finite, limited
177 resources indeed matches the definition of a classical optimization problem.
178
179 Specifically the degrees of freedom when addressing the problem of replacing the single monolithic
180 FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$,
181 the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ needed to represent
182 the data $x_k$ fed to each filter as provided by the acquisition or previous processing stage.
183 Because each FIR in the chain is fed the output of the previous stage,
184 the optimization of the complete processing chain within a constrained resource environment is not
185 trivial. The resource occupation of a FIR filter is considered as $C_i \times N_i$ which aims
186 at approximating the number of bits needed in a worst case condition to represent the output of the
187 FIR. Indeed, the number of bits generated by the $i$th FIR is $(C_i+D_i)\times\log_2(N_i)$, but the
188 $\log$ function is avoided for its incompatibility with a linear programming description, and
189 the simple product is approximated as the number of gates needed to perform the calculation. Such an
190 occupied area estimate assumes that the number of gates scales as the number of bits and the number
191 of coefficients, but does not account for the detailed implementation of the hardware. Indeed,
192 various FPGA implementations will provide different hardware functionalities, and we shall consider
193 at the end of the design a synthesis step using vendor software to assess the validity of the solution
194 found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random
195 Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications
196 are most efficiently implemented by using DSP blocks whose input word
197 size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high
198 abstraction on the resource occupation is nevertheless selected in the following discussion in order
199 to leave enough degrees of freedom in the problem to try and find original solutions: too many
200 constraints in the initial statement of the problem leave little room for finding an optimal solution.
201
202 \begin{figure}[h!tb]
203 \begin{center}
204 \includegraphics[width=.5\linewidth]{schema2}
205 \caption{Shape of the filter transmitted power $P$ as a function of frequency:
206 the bandpass BP is considered to occupy the initial
207 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition
208 width.}
209 \label{rejection-shape}
210 \end{center}
211 \end{figure}
212
213 Following these considerations, the model is expressed as:
214 \begin{align}
215 \begin{cases}
216 \mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\
217 \mathcal{A}_i &= N_i \times C_i\\
218 \Delta_i &= \Delta _{i-1} + \mathcal{P}_i
219 \end{cases}
220 \label{model-FIR}
221 \end{align}
222 To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the stopband rejection dependence with $N_i$ and $C_i$, $\mathcal{A}_i$
223 is a theoretical area occupation of the processing block on the FPGA as discussed earlier, and $\Delta_i$ is the total rejection for the current stage $i$.
224 Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending
225 on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an
226 incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements.
227 Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will
228 be illustrated lated (section \ref{median}), we have designed
229 a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband
230 (Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response
231 in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid
232 ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter
233 rejection capability. Weighing these two criteria allows designing the linear program to be solved.
234
235 \begin{figure}[h!tb]
236 \includegraphics[width=\linewidth]{images/noise-rejection.pdf}
237 \caption{Rejection as a function of number of coefficients and number of bits.}
238 \label{noise-rejection}
239 \end{figure}
240
241 {\bf ARTHUR : reg\'en\'erer une pyramide juste}
242
243 The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource
244 occupation below a user-defined threshold, or as will be discussed here, aims at minimizing the area
245 needed to reach a given rejection ($\min(S_q)$ in the forthcoming discussion, Eqs. \ref{cstr_size}
246 and \ref{cstr_rejection}). The MILP solver is allowed to choose the number of successive
247 filters, within an upper bound. The last problem is to model the noise rejection. Since filter
248 noise rejection capability is not modeled with linear equations, a look-up-table is generated
249 for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each
250 one of these conditions, the low-pass filter rejection is stored as computed by the frequency response
251 of the digital filter (Fig. \ref{noise-rejection}). Various rejection criteria have been investigated,
252 including mean value of the stopband response, median value of the stopband response, or as finally
253 selected, maximum value in the stopband. An intuitive analysis of the chart of Fig. \ref{noise-rejection}
254 hints at an optimum
255 set of tap length and number of bit for representing the coefficients along the line of the pyramidal
256 shaped rejection capability function.
257
258 Linear program formalism for solving the problem is well documented: an objective function is
259 defined which is linearly dependent on the parameters to be optimized. Constraints are expressed
260 as linear equations and solved using one of the available solvers, in our case GLPK\cite{glpk}.
261 With the notations used in the description of system \ref{model-FIR}, we have defined the linear problem as:
262 \paragraph{Variables}
263 \begin{align*}
264 x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\
265 & \text{ $j$ is the stage} \\
266 & \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\
267 \end{align*}
268 \paragraph{Constants}
269 \begin{align*}
270 \mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\
271 & \text{ $p$ is the number of different filters} \\
272 % N(i) & \text{ % Constant to let the
273 % number of coefficients %} \\ & \text{
274 % for filter $i$}\\
275 % C(i) & \text{ % Constant to let the
276 % number of bits of %}\\ & \text{
277 % each coefficient for filter $i$}\\
278 \mathcal{S}_{\max} & \text{ Total space available inside the FPGA}
279 \end{align*}
280 \paragraph{Constraints}
281 \begin{align}
282 1 \leq i \leq p & \nonumber\\
283 1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\
284 \forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\
285 \mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\
286 \forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\
287 \mathcal{S}_j \leq \mathcal{S}_{\max}\nonumber \\
288 \mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\
289 \forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\
290 \mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\
291 & \text{ (e.g. 160~dB here)}\nonumber\\\nonumber
292 \end{align}
293 \paragraph{Goal}
294 \begin{align*}
295 \min \mathcal{S}_q
296 \end{align*}
297
298 The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on
299 the previous occupation and the occupation of current selected filter (it is possible
300 that no filter is selected for this stage). And the second one \ref{cstr_rejection}
301 means the same thing but for the rejection, the rejection depends the previous rejection
302 plus the rejection of selected filter.
303
304 \subsection{Low bandpass ripple and maximum rejection criteria}
305
306 The MILP solver provides a solution to the problem by selecting a series of small FIR with
307 increasing number of bits representing data and coefficients as well as an increasing number
308 of coefficients, instead of a single monolithic filter.
309
310 \begin{figure}[h!tb]
311 % \includegraphics[width=\linewidth]{images/compare-fir.pdf}
312 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf}
313 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
314 with a cutoff frequency set at half the Nyquist frequency.}
315 \label{compare-fir}
316 \end{figure}
317
318 Fig. \ref{compare-fir} exhibits the
319 performance comparison between one solution and a monolithic FIR when selecting a cutoff
320 frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the
321 same space usage are provided as selected by the MILP solver. The FIR cascade provides improved
322 rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to
323 be tuned or compensated for.
324
325
326 The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}.
327 We have considered a set of resources representative of the hardware platform we work on,
328 Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results reported in
329 Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to
330 the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10
331 filters fit in the available resources. However, in all cases the DSP resources are fully
332 used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software,
333 implementing the design fails due to the excessive resource usage preventing routing the signals
334 on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization
335 procedure by finding non-trivial solutions matching resource constraints, but on the other
336 hand also illustrates the limitation of a model with an abstraction layer that does not account
337 for the detailed architecture of the hardware.
338
339 \begin{table}[h!tb]
340 \caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade
341 identified as optimal by the MILP solver within a finite resource criterion. The last line refers
342 to available resources on a Zynq-7020 as found on the Zedboard.}
343 \begin{center}
344 \begin{tabular}{|c|cccc|}\hline
345 FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline
346 1 (monolithic) & 1 & 76183 & 220 & -162 \\
347 5 & 5 & 18597 & 220 & -160 \\
348 10 & 8 & 24729 & 220 & -161 \\\hline\hline
349 \textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline
350 %\begin{tabular}{|c|ccccc|}\hline
351 %FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline
352 %1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\
353 %5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\
354 %10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline
355 %\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline
356 \end{tabular}
357 \end{center}
358 %\vspace{-0.7cm}
359 \label{t1}
360 \end{table}
361
362 \subsection{Alternate criteria}\label{median}
363
364 Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer
365 function, namely low ripple in the bandpass defined as the first 40\% of the frequency
366 range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for
367 demonstrating the need to properly select the optimization criterion, two cases of poor
368 filter shapes obtained by selecting the mean value and median value of the rejection,
369 with no consideration for the ripples in the bandpass. The results of the optimizations,
370 in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}.
371
372 \begin{figure}[h!tb]
373 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf}
374 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
375 with a cutoff frequency set at half the Nyquist frequency.}
376 \label{compare-mean}
377 \end{figure}
378
379 In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not
380 acceptable since the notch at the end of the transition band compensates for some unacceptable
381 rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive
382 high frequency spurious components to be aliased at low frequency when decimating the signal.
383 Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and
384 and slowly decaying transfer function starting to attenuate spectral components well before the
385 transition band starts. Such issues are partly aleviated by replacing a mean rejection value with
386 a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for
387 the reasons stated previously and much poorer than those found with the maximum rejection criterion
388 selected earlier (Fig. \ref{compare-fir}).
389
390 \begin{figure}[h!tb]
391 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf}
392 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
393 with a cutoff frequency set at half the Nyquist frequency.}
394 \label{compare-median}
395 \end{figure}
396
397 \section{Filter coefficient selection}
398
399 The coefficients of a single monolithic filter are computed as the impulse response
400 of the filter transfer function, and practically approximated by a multitude of methods
401 including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing
402 (Matlab's {\tt fir1} function).
403
404 \begin{figure}[h!tb]
405 \includegraphics[width=\linewidth]{images/fir1-vs-firls}
406 \caption{Evolution of the rejection capability of least-square optimized filters and Hamming
407 FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit
408 encoded integers.}
409 \label{2}
410 \end{figure}
411
412 Cascading filters opens a new optimization opportunity by
413 selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2}
414 illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better
415 rejection than {\tt firls}: since the linear solver increases the number of coefficients along
416 the processing chain, the type of selected filter also changes depending on the number of coefficients
417 and evolves along the processing chain.
418
419 \section{Conclusion}
420
421 We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate
422 Array for improved noise rejection within constrained resource occupation, as needed for
423 real time processing of radiofrequency signal when characterizing spectral phase noise
424 characteristics of stable oscillators. The flexibility of the digital approach makes the result
425 best suited for closing the loop and using the measurement output in a feedback loop for
426 controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior
427 is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical
428 atomic transition).
429
430 \section*{Acknowledgement}
431
432 This work is supported by the ANR Programme d'Investissement d'Avenir in
433 progress at the Time and Frequency Departments of the FEMTO-ST Institute
434 (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
435 The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila
436 for support and fruitful discussions.
437
438 \bibliographystyle{IEEEtran}
439 \balance
440 \bibliography{references,biblio}
441 \end{document}
442
443 \section{Contexte d'ordonnancement}
444 Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement
445 et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait
446 nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement
447 et d'optimisation.
448
449 \subsection{D\'efinition du vocabulaire}
450 Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions
451 importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} :
452 \begin{definition}
453 \label{def-ordo1}
454 Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ :
455 $V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$.
456 \end{definition}
457
458 Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances
459 des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de
460 chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors
461 la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son
462 temps d'ex\'ecution.
463
464 Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est :
465 \begin{definition}
466 \label{def-ordo2}
467 L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec
468 l'objectif d'optimiser un ou plusieurs critères de performance.
469 \end{definition}
470
471 Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}.
472 En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches.
473 Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement.
474
475 En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela,
476 il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles
477 sont les m\'ethodes qu'on peut appliquer.
478
479 Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories :
480 \begin{itemize}
481 \item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes
482 les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e.
483 \item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps,
484 les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter
485 des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas,
486 on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une
487 t\^ache de fin.
488 \item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où
489 il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème
490 que nous traitons ici.
491 \end{itemize}
492
493 Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications
494 de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes.
495
496 Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de
497 critères possibles. Nous allons donc parler des principaux :
498 \begin{itemize}
499 \item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation
500 les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des
501 t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant
502 la fin d'ex\'ecution au plus tôt.
503 \item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches
504 et d'optimiser ce r\'esultat.
505 \item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees.
506 \end{itemize}
507
508 En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation
509 multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un
510 des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet
511 de faire le meilleur compromis entre tous les critères.
512
513 \subsection{Formalisation du problème}
514 \label{formalisation}
515 Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser
516 formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes}
517 et nous essayerons de les formaliser le plus finement possible.
518
519 Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres
520 que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une
521 t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble.
522
523 Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs :
524 \begin{itemize}
525 \item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge.
526 En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge.
527 Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la
528 dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee
529 et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2
530 \item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements
531 les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$.
532 \item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent).
533 Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du
534 flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$.
535 \item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp.
536 est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette
537 fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$
538 et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$.
539 \item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle
540 fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la
541 t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$.
542 \item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc.
543 Nous nommerons $\mathcal{A}_i$ cette taille.
544 \item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter
545 la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\
546 %TODO Est-ce vraiment un paramètre ?
547 \end{itemize}
548
549 Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations
550 que nous avons identifi\'ees :
551 \begin{itemize}
552 \item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution
553 de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes.
554 \item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart
555 et les paramètres internes de la t\^ache.
556 \item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit
557 sortant et des variables internes de la t\^ache.
558 \item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$
559 \end{itemize}
560 Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche,
561 sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions.
562
563 Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit
564 un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes :
565
566 \paragraph{Contrainte de pr\'ecision :}
567 Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre :
568 \begin{align*}
569 \pi _i ^+ \geq \pi _j ^-
570 \end{align*}
571
572 \paragraph{Contrainte de d\'ebit :}
573 Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre :
574 \begin{align*}
575 d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache}
576 \end{align*}
577
578 \paragraph{Contrainte de synchronisation :}
579 Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles
580 et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même.
581 Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors :
582 \begin{align*}
583 \forall \text{ chemin } \mathcal{C}1(s, .., f),
584 \forall \text{ chemin } \mathcal{C}2(s, .., f)
585 \text{ tel que } \mathcal{C}1 \neq \mathcal{C}2
586 \Rightarrow
587 \sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i
588 \end{align*}
589
590 \paragraph{Contrainte de place :}
591 Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ :