Commit c9c460c6b3fcd74cb724baf8cac0a56e85dfa428
1 parent
e888703438
Exists in
master
menage article IFCS
Showing 2 changed files with 13 additions and 669 deletions Inline Diff
ifcs2018_article.tex
% fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee | 1 | File was deleted | ||
% demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de | 2 | |||
% rejection par bit et perte si moins de bits que rejection/6 | 3 | |||
% developper programme lineaire en incluant le decalage de bits | 4 | |||
% insister que avant on etait synthetisable mais pas implementable, alors que maintenant on | 5 | |||
% implemente et on demontre que ca tourne | 6 | |||
% gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ? | 7 | |||
% Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer | 8 | |||
% (zedboard ou redpit) | 9 | |||
10 | ||||
\documentclass[a4paper,transaction]{IEEEtran/IEEEtran} | 11 | |||
\usepackage{graphicx,color,hyperref} | 12 | |||
\usepackage{amsfonts} | 13 | |||
\usepackage{amsthm} | 14 | |||
\usepackage{amssymb} | 15 | |||
\usepackage{amsmath} | 16 | |||
\usepackage{algorithm2e} | 17 | |||
\usepackage{url,balance} | 18 | |||
\usepackage[normalem]{ulem} | 19 | |||
% correct bad hyphenation here | 20 | |||
\hyphenation{op-tical net-works semi-conduc-tor} | 21 | |||
\textheight=26cm | 22 | |||
\setlength{\footskip}{30pt} | 23 | |||
\pagenumbering{gobble} | 24 | |||
\begin{document} | 25 | |||
\title{Filter optimization for real time digital processing of radiofrequency signals: application | 26 | |||
to oscillator metrology} | 27 | |||
28 | ||||
\author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, | 29 | |||
G. Goavec-M\'erou\IEEEauthorrefmark{1}, | 30 | |||
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} | 31 | |||
\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } | 32 | |||
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ | 33 | |||
Email: \{pyb2,jmfriedt\}@femto-st.fr} | 34 | |||
} | 35 | |||
\maketitle | 36 | |||
\thispagestyle{plain} | 37 | |||
\pagestyle{plain} | 38 | |||
\newtheorem{definition}{Definition} | 39 | |||
40 | ||||
\begin{abstract} | 41 | |||
Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to | 42 | |||
radiofrequency signal processing. Applied to oscillator characterization in the context | 43 | |||
of ultrastable clocks, stringent filtering requirements are defined by spurious signal or | 44 | |||
noise rejection needs. Since real time radiofrequency processing must be performed in a | 45 | |||
Field Programmable Array to meet timing constraints, we investigate optimization strategies | 46 | |||
to design filters meeting rejection characteristics while limiting the hardware resources | 47 | |||
required and keeping timing constraints within the targeted measurement bandwidths. | 48 | |||
\end{abstract} | 49 | |||
50 | ||||
\begin{IEEEkeywords} | 51 | |||
Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter | 52 | |||
\end{IEEEkeywords} | 53 | |||
54 | ||||
\section{Digital signal processing of ultrastable clock signals} | 55 | |||
56 | ||||
Analog oscillator phase noise characteristics are classically performed by downconverting | 57 | |||
the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, | 58 | |||
followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In | 59 | |||
a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by | 60 | |||
multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. | 61 | |||
62 | ||||
\begin{figure}[h!tb] | 63 | |||
\begin{center} | 64 | |||
\includegraphics[width=.8\linewidth]{schema} | 65 | |||
\end{center} | 66 | |||
\caption{Fully digital oscillator phase noise characterization: the Device Under Test | 67 | |||
(DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and | 68 | |||
downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals | 69 | |||
and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite | 70 | |||
Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays | 71 | |||
the spectral characteristics of the phase fluctuations.} | 72 | |||
% JMF : argumenter de la cascade de FIR | 73 | |||
\label{schema} | 74 | |||
\end{figure} | 75 | |||
76 | ||||
As with the analog mixer, | 77 | |||
the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as | 78 | |||
well as the generation of the frequency sum signal in addition to the frequency difference. | 79 | |||
These unwanted spectral characteristics must be rejected before decimating the data stream | 80 | |||
for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the | 81 | |||
downconverter | 82 | |||
and the decimation processing blocks are core characteristics of an oscillator characterization | 83 | |||
system, and must reject out-of-band signals below the targeted phase noise -- typically in the | 84 | |||
sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will | 85 | |||
use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency | 86 | |||
datastream: optimizing the performance of the filter while reducing the needed resources is | 87 | |||
hence tackled in a systematic approach using optimization techniques. Most significantly, we | 88 | |||
tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with | 89 | |||
tunable number of coefficients and tunable number of bits representing the coefficients and the | 90 | |||
data being processed. | 91 | |||
92 | ||||
\section{Finite impulse response filter} | 93 | |||
94 | ||||
We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined | 95 | |||
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the | 96 | |||
outputs $y_k$ | 97 | |||
$$y_n=\sum_{k=0}^N b_k x_{n-k}$$ | 98 | |||
99 | ||||
As opposed to an implementation on a general purpose processor in which word size is defined by the | 100 | |||
processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since | 101 | |||
not only the coefficient values and number of taps must be defined, but also the number of bits | 102 | |||
defining the coefficients and the sample size. For this reason, and because we consider pipeline | 103 | |||
processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency | 104 | |||
signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but | 105 | |||
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level. | 106 | |||
Since latency is not an issue in a openloop phase noise characterization instrument, the large | 107 | |||
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, | 108 | |||
is not considered as an issue as would be in a closed loop system. | 109 | |||
110 | ||||
The coefficients are classically expressed as floating point values. However, this binary | 111 | |||
number representation is not efficient for fast arithmetic computation by an FPGA. Instead, | 112 | |||
we select to quantify these floating point values into integer values. This quantization | 113 | |||
will result in some precision loss. | 114 | |||
115 | ||||
%As illustrated in Fig. \ref{float_vs_int}, we see that we aren't | 116 | |||
%need too coefficients or too sample size. If we have lot of coefficients but a small sample size, | 117 | |||
%the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality. | 118 | |||
119 | ||||
% JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous | 120 | |||
% AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi) | 121 | |||
% et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler | 122 | |||
123 | ||||
%\begin{figure}[h!tb] | 124 | |||
%\includegraphics[width=\linewidth]{images/float-vs-integer.pdf} | 125 | |||
%\caption{Impact of the quantization resolution of the coefficients} | 126 | |||
%\label{float_vs_int} | 127 | |||
%\end{figure} | 128 | |||
129 | ||||
\begin{figure}[h!tb] | 130 | |||
\includegraphics[width=\linewidth]{images/demo_filtre} | 131 | |||
\caption{Impact of the quantization resolution of the coefficients: the quantization is | 132 | |||
set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting | 133 | |||
the 30~first and 30~last coefficients out of the initial 128~band-pass | 134 | |||
filter coefficients to 0 (red dots).} | 135 | |||
\label{float_vs_int} | 136 | |||
\end{figure} | 137 | |||
138 | ||||
The tradeoff between quantization resolution and number of coefficients when considering | 139 | |||
integer operations is not trivial. As an illustration of the issue related to the | 140 | |||
relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits | 141 | |||
a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon | 142 | |||
quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the | 143 | |||
taps become null, making the large number of coefficients irrelevant and allowing to save | 144 | |||
processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources | 145 | |||
to reach a given rejection level, or maximizing out of band rejection for a given computational | 146 | |||
resource, will drive the investigation on cascading filters designed with varying tap resolution | 147 | |||
and tap length, as will be shown in the next section. Indeed, our development strategy closely | 148 | |||
follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} | 149 | |||
in which basic blocks are defined and characterized before being assembled \cite{hide} | 150 | |||
in a complete processing chain. In our case, assembling the filter blocks is a simpler block | 151 | |||
combination process since we assume a single value to be processed and a single value to be | 152 | |||
generated at each clock cycle. The FIR filters will not be considered to decimate in the | 153 | |||
current implementation: the decimation is assumed to be located after the FIR cascade at the | 154 | |||
moment. | 155 | |||
156 | ||||
\section{Filter optimization} | 157 | |||
158 | ||||
A basic approach for implementing the FIR filter is to compute the transfer function of | 159 | |||
a monolithic filter: this single filter defines all coefficients with the same resolution | 160 | |||
(number of bits) and processes data represented with their own resolution. Meeting the | 161 | |||
filter shape requires a large number of coefficients, limited by resources of the FPGA since | 162 | |||
this filter must process data stream at the radiofrequency sampling rate after the mixer. | 163 | |||
164 | ||||
An optimization problem \cite{leung2004handbook} aims at improving one or many | 165 | |||
performance criteria within a constrained resource environment. Amongst the tools | 166 | |||
developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to | 167 | |||
formally define the stated problem and search for an optimal use of available | 168 | |||
resources \cite{yu2007design, kodek1980design}. | 169 | |||
170 | ||||
First we need to ensure that our problem is a real optimization problem. When | 171 | |||
designing a processing function in the FPGA, we aim at meeting some requirement such as | 172 | |||
the throughput, the computation time or the noise rejection noise. However, due to limited | 173 | |||
resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor) | 174 | |||
or LUT (Look Up Table), a tradeoff must be generally searched between performance and available | 175 | |||
computational resources: optimizing some criteria within finite, limited | 176 | |||
resources indeed matches the definition of a classical optimization problem. | 177 | |||
178 | ||||
Specifically the degrees of freedom when addressing the problem of replacing the single monolithic | 179 | |||
FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$, | 180 | |||
the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ needed to represent | 181 | |||
the data $x_k$ fed to each filter as provided by the acquisition or previous processing stage. | 182 | |||
Because each FIR in the chain is fed the output of the previous stage, | 183 | |||
the optimization of the complete processing chain within a constrained resource environment is not | 184 | |||
trivial. The resource occupation of a FIR filter is considered as $C_i \times N_i$ which aims | 185 | |||
at approximating the number of bits needed in a worst case condition to represent the output of the | 186 | |||
FIR. Indeed, the number of bits generated by the $i$th FIR is $(C_i+D_i)\times\log_2(N_i)$, but the | 187 | |||
$\log$ function is avoided for its incompatibility with a linear programming description, and | 188 | |||
the simple product is approximated as the number of gates needed to perform the calculation. Such an | 189 | |||
occupied area estimate assumes that the number of gates scales as the number of bits and the number | 190 | |||
of coefficients, but does not account for the detailed implementation of the hardware. Indeed, | 191 | |||
various FPGA implementations will provide different hardware functionalities, and we shall consider | 192 | |||
at the end of the design a synthesis step using vendor software to assess the validity of the solution | 193 | |||
found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random | 194 | |||
Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications | 195 | |||
are most efficiently implemented by using DSP blocks whose input word | 196 | |||
size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high | 197 | |||
abstraction on the resource occupation is nevertheless selected in the following discussion in order | 198 | |||
to leave enough degrees of freedom in the problem to try and find original solutions: too many | 199 | |||
constraints in the initial statement of the problem leave little room for finding an optimal solution. | 200 | |||
201 | ||||
\begin{figure}[h!tb] | 202 | |||
\begin{center} | 203 | |||
\includegraphics[width=.5\linewidth]{schema2} | 204 | |||
\caption{Shape of the filter transmitted power $P$ as a function of frequency: | 205 | |||
the bandpass BP is considered to occupy the initial | 206 | |||
40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition | 207 | |||
width.} | 208 | |||
\label{rejection-shape} | 209 | |||
\end{center} | 210 | |||
\end{figure} | 211 | |||
212 | ||||
Following these considerations, the model is expressed as: | 213 | |||
\begin{align} | 214 | |||
\begin{cases} | 215 | |||
\mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\ | 216 | |||
\mathcal{A}_i &= N_i \times C_i\\ | 217 | |||
\Delta_i &= \Delta _{i-1} + \mathcal{P}_i | 218 | |||
\end{cases} | 219 | |||
\label{model-FIR} | 220 | |||
\end{align} | 221 | |||
To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the stopband rejection dependence with $N_i$ and $C_i$, $\mathcal{A}_i$ | 222 | |||
is a theoretical area occupation of the processing block on the FPGA as discussed earlier, and $\Delta_i$ is the total rejection for the current stage $i$. | 223 | |||
Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending | 224 | |||
on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an | 225 | |||
incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements. | 226 | |||
Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will | 227 | |||
be illustrated lated (section \ref{median}), we have designed | 228 | |||
a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband | 229 | |||
(Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response | 230 | |||
in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid | 231 | |||
ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter | 232 | |||
rejection capability. Weighing these two criteria allows designing the linear program to be solved. | 233 | |||
234 | ||||
\begin{figure}[h!tb] | 235 | |||
\includegraphics[width=\linewidth]{images/noise-rejection.pdf} | 236 | |||
\caption{Rejection as a function of number of coefficients and number of bits.} | 237 | |||
\label{noise-rejection} | 238 | |||
\end{figure} | 239 | |||
240 | ||||
{\bf ARTHUR : reg\'en\'erer une pyramide juste} | 241 | |||
242 | ||||
The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource | 243 | |||
occupation below a user-defined threshold, or as will be discussed here, aims at minimizing the area | 244 | |||
needed to reach a given rejection ($\min(S_q)$ in the forthcoming discussion, Eqs. \ref{cstr_size} | 245 | |||
and \ref{cstr_rejection}). The MILP solver is allowed to choose the number of successive | 246 | |||
filters, within an upper bound. The last problem is to model the noise rejection. Since filter | 247 | |||
noise rejection capability is not modeled with linear equations, a look-up-table is generated | 248 | |||
for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each | 249 | |||
one of these conditions, the low-pass filter rejection is stored as computed by the frequency response | 250 | |||
of the digital filter (Fig. \ref{noise-rejection}). Various rejection criteria have been investigated, | 251 | |||
including mean value of the stopband response, median value of the stopband response, or as finally | 252 | |||
selected, maximum value in the stopband. An intuitive analysis of the chart of Fig. \ref{noise-rejection} | 253 | |||
hints at an optimum | 254 | |||
set of tap length and number of bit for representing the coefficients along the line of the pyramidal | 255 | |||
shaped rejection capability function. | 256 | |||
257 | ||||
Linear program formalism for solving the problem is well documented: an objective function is | 258 | |||
defined which is linearly dependent on the parameters to be optimized. Constraints are expressed | 259 | |||
as linear equations and solved using one of the available solvers, in our case GLPK\cite{glpk}. | 260 | |||
With the notations used in the description of system \ref{model-FIR}, we have defined the linear problem as: | 261 | |||
\paragraph{Variables} | 262 | |||
\begin{align*} | 263 | |||
x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\ | 264 | |||
& \text{ $j$ is the stage} \\ | 265 | |||
& \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\ | 266 | |||
\end{align*} | 267 | |||
\paragraph{Constants} | 268 | |||
\begin{align*} | 269 | |||
\mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\ | 270 | |||
& \text{ $p$ is the number of different filters} \\ | 271 | |||
% N(i) & \text{ % Constant to let the | 272 | |||
% number of coefficients %} \\ & \text{ | 273 | |||
% for filter $i$}\\ | 274 | |||
% C(i) & \text{ % Constant to let the | 275 | |||
% number of bits of %}\\ & \text{ | 276 | |||
% each coefficient for filter $i$}\\ | 277 | |||
\mathcal{S}_{\max} & \text{ Total space available inside the FPGA} | 278 | |||
\end{align*} | 279 | |||
\paragraph{Constraints} | 280 | |||
\begin{align} | 281 | |||
1 \leq i \leq p & \nonumber\\ | 282 | |||
1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\ | 283 | |||
\forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\ | 284 | |||
\mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\ | 285 | |||
\forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\ | 286 | |||
\mathcal{S}_j \leq \mathcal{S}_{\max}\nonumber \\ | 287 | |||
\mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\ | 288 | |||
\forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\ | 289 | |||
\mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\ | 290 | |||
& \text{ (e.g. 160~dB here)}\nonumber\\\nonumber | 291 | |||
\end{align} | 292 | |||
\paragraph{Goal} | 293 | |||
\begin{align*} | 294 | |||
\min \mathcal{S}_q | 295 | |||
\end{align*} | 296 | |||
297 | ||||
The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on | 298 | |||
the previous occupation and the occupation of current selected filter (it is possible | 299 | |||
that no filter is selected for this stage). And the second one \ref{cstr_rejection} | 300 | |||
means the same thing but for the rejection, the rejection depends the previous rejection | 301 | |||
plus the rejection of selected filter. | 302 | |||
303 | ||||
\subsection{Low bandpass ripple and maximum rejection criteria} | 304 | |||
305 | ||||
The MILP solver provides a solution to the problem by selecting a series of small FIR with | 306 | |||
increasing number of bits representing data and coefficients as well as an increasing number | 307 | |||
of coefficients, instead of a single monolithic filter. | 308 | |||
309 | ||||
\begin{figure}[h!tb] | 310 | |||
% \includegraphics[width=\linewidth]{images/compare-fir.pdf} | 311 | |||
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf} | 312 | |||
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR | 313 | |||
with a cutoff frequency set at half the Nyquist frequency.} | 314 | |||
\label{compare-fir} | 315 | |||
\end{figure} | 316 | |||
317 | ||||
Fig. \ref{compare-fir} exhibits the | 318 | |||
performance comparison between one solution and a monolithic FIR when selecting a cutoff | 319 | |||
frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the | 320 | |||
same space usage are provided as selected by the MILP solver. The FIR cascade provides improved | 321 | |||
rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to | 322 | |||
be tuned or compensated for. | 323 | |||
324 | ||||
325 | ||||
The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}. | 326 | |||
We have considered a set of resources representative of the hardware platform we work on, | 327 | |||
Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results reported in | 328 | |||
Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to | 329 | |||
the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10 | 330 | |||
filters fit in the available resources. However, in all cases the DSP resources are fully | 331 | |||
used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software, | 332 | |||
implementing the design fails due to the excessive resource usage preventing routing the signals | 333 | |||
on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization | 334 | |||
procedure by finding non-trivial solutions matching resource constraints, but on the other | 335 | |||
hand also illustrates the limitation of a model with an abstraction layer that does not account | 336 | |||
for the detailed architecture of the hardware. | 337 | |||
338 | ||||
\begin{table}[h!tb] | 339 | |||
\caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade | 340 | |||
identified as optimal by the MILP solver within a finite resource criterion. The last line refers | 341 | |||
to available resources on a Zynq-7020 as found on the Zedboard.} | 342 | |||
\begin{center} | 343 | |||
\begin{tabular}{|c|cccc|}\hline | 344 | |||
FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline | 345 | |||
1 (monolithic) & 1 & 76183 & 220 & -162 \\ | 346 | |||
5 & 5 & 18597 & 220 & -160 \\ | 347 | |||
10 & 8 & 24729 & 220 & -161 \\\hline\hline | 348 | |||
\textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline | 349 | |||
%\begin{tabular}{|c|ccccc|}\hline | 350 | |||
%FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline | 351 | |||
%1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\ | 352 | |||
%5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\ | 353 | |||
%10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline | 354 | |||
%\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline | 355 | |||
\end{tabular} | 356 | |||
\end{center} | 357 | |||
%\vspace{-0.7cm} | 358 | |||
\label{t1} | 359 | |||
\end{table} | 360 | |||
361 | ||||
\subsection{Alternate criteria}\label{median} | 362 | |||
363 | ||||
Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer | 364 | |||
function, namely low ripple in the bandpass defined as the first 40\% of the frequency | 365 | |||
range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for | 366 | |||
demonstrating the need to properly select the optimization criterion, two cases of poor | 367 | |||
filter shapes obtained by selecting the mean value and median value of the rejection, | 368 | |||
with no consideration for the ripples in the bandpass. The results of the optimizations, | 369 | |||
in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}. | 370 | |||
371 | ||||
\begin{figure}[h!tb] | 372 | |||
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf} | 373 | |||
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR | 374 | |||
with a cutoff frequency set at half the Nyquist frequency.} | 375 | |||
\label{compare-mean} | 376 | |||
\end{figure} | 377 | |||
378 | ||||
In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not | 379 | |||
acceptable since the notch at the end of the transition band compensates for some unacceptable | 380 | |||
rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive | 381 | |||
high frequency spurious components to be aliased at low frequency when decimating the signal. | 382 | |||
Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and | 383 | |||
and slowly decaying transfer function starting to attenuate spectral components well before the | 384 | |||
transition band starts. Such issues are partly aleviated by replacing a mean rejection value with | 385 | |||
a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for | 386 | |||
the reasons stated previously and much poorer than those found with the maximum rejection criterion | 387 | |||
selected earlier (Fig. \ref{compare-fir}). | 388 | |||
389 | ||||
\begin{figure}[h!tb] | 390 | |||
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf} | 391 | |||
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR | 392 | |||
with a cutoff frequency set at half the Nyquist frequency.} | 393 | |||
\label{compare-median} | 394 | |||
\end{figure} | 395 | |||
396 | ||||
\section{Filter coefficient selection} | 397 | |||
398 | ||||
The coefficients of a single monolithic filter are computed as the impulse response | 399 | |||
of the filter transfer function, and practically approximated by a multitude of methods | 400 | |||
including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing | 401 | |||
(Matlab's {\tt fir1} function). | 402 | |||
403 | ||||
\begin{figure}[h!tb] | 404 | |||
\includegraphics[width=\linewidth]{images/fir1-vs-firls} | 405 | |||
\caption{Evolution of the rejection capability of least-square optimized filters and Hamming | 406 | |||
FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit | 407 | |||
encoded integers.} | 408 | |||
\label{2} | 409 | |||
\end{figure} | 410 | |||
411 | ||||
Cascading filters opens a new optimization opportunity by | 412 | |||
selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2} | 413 | |||
illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better | 414 | |||
rejection than {\tt firls}: since the linear solver increases the number of coefficients along | 415 | |||
the processing chain, the type of selected filter also changes depending on the number of coefficients | 416 | |||
and evolves along the processing chain. | 417 | |||
418 | ||||
\section{Conclusion} | 419 | |||
420 | ||||
We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate | 421 | |||
Array for improved noise rejection within constrained resource occupation, as needed for | 422 | |||
real time processing of radiofrequency signal when characterizing spectral phase noise | 423 | |||
characteristics of stable oscillators. The flexibility of the digital approach makes the result | 424 | |||
best suited for closing the loop and using the measurement output in a feedback loop for | 425 | |||
controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior | 426 | |||
is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical | 427 | |||
atomic transition). | 428 | |||
429 | ||||
\section*{Acknowledgement} | 430 | |||
431 | ||||
This work is supported by the ANR Programme d'Investissement d'Avenir in | 432 | |||
progress at the Time and Frequency Departments of the FEMTO-ST Institute | 433 | |||
(Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. | 434 | |||
The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila | 435 | |||
for support and fruitful discussions. | 436 | |||
437 | ||||
\bibliographystyle{IEEEtran} | 438 | |||
\balance | 439 | |||
\bibliography{references,biblio} | 440 | |||
\end{document} | 441 | |||
442 | ||||
\section{Contexte d'ordonnancement} | 443 | |||
Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement | 444 | |||
et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait | 445 | |||
nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement | 446 | |||
et d'optimisation. | 447 | |||
448 | ||||
\subsection{D\'efinition du vocabulaire} | 449 | |||
Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions | 450 | |||
importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} : | 451 | |||
\begin{definition} | 452 | |||
\label{def-ordo1} | 453 | |||
Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ : | 454 | |||
$V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$. | 455 | |||
\end{definition} | 456 | |||
457 | ||||
Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances | 458 | |||
des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de | 459 | |||
chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors | 460 | |||
la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son | 461 | |||
temps d'ex\'ecution. | 462 | |||
463 | ||||
Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est : | 464 | |||
\begin{definition} | 465 | |||
\label{def-ordo2} | 466 | |||
L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec | 467 | |||
l'objectif d'optimiser un ou plusieurs critères de performance. | 468 | |||
\end{definition} | 469 | |||
470 | ||||
Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}. | 471 | |||
En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches. | 472 | |||
Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement. | 473 | |||
474 | ||||
En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela, | 475 | |||
il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles | 476 | |||
sont les m\'ethodes qu'on peut appliquer. | 477 | |||
478 | ||||
Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories : | 479 | |||
\begin{itemize} | 480 | |||
\item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes | 481 | |||
les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e. | 482 | |||
\item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps, | 483 | |||
les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter | 484 | |||
des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas, | 485 | |||
on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une | 486 | |||
t\^ache de fin. | 487 | |||
\item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où | 488 | |||
il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème | 489 | |||
que nous traitons ici. | 490 | |||
\end{itemize} | 491 | |||
492 | ||||
Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications | 493 | |||
de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes. | 494 | |||
495 | ||||
Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de | 496 | |||
critères possibles. Nous allons donc parler des principaux : | 497 | |||
\begin{itemize} | 498 | |||
\item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation | 499 | |||
les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des | 500 | |||
t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant | 501 | |||
la fin d'ex\'ecution au plus tôt. | 502 | |||
\item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches | 503 | |||
et d'optimiser ce r\'esultat. | 504 | |||
\item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees. | 505 | |||
\end{itemize} | 506 | |||
507 | ||||
En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation | 508 | |||
multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un | 509 | |||
des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet | 510 | |||
de faire le meilleur compromis entre tous les critères. | 511 | |||
512 | ||||
\subsection{Formalisation du problème} | 513 | |||
\label{formalisation} | 514 | |||
Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser | 515 | |||
formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes} | 516 | |||
et nous essayerons de les formaliser le plus finement possible. | 517 | |||
518 | ||||
Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres | 519 | |||
que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une | 520 | |||
t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble. | 521 | |||
522 | ||||
Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs : | 523 | |||
\begin{itemize} | 524 | |||
\item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge. | 525 | |||
En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge. | 526 | |||
Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la | 527 | |||
dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee | 528 | |||
et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2 | 529 | |||
\item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements | 530 | |||
les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$. | 531 | |||
\item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent). | 532 | |||
Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du | 533 | |||
flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$. | 534 | |||
\item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp. | 535 | |||
est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette | 536 | |||
fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$ | 537 | |||
et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$. | 538 | |||
\item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle | 539 | |||
fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la | 540 | |||
t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$. | 541 | |||
\item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc. | 542 | |||
Nous nommerons $\mathcal{A}_i$ cette taille. | 543 | |||
\item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter | 544 | |||
la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\ | 545 | |||
%TODO Est-ce vraiment un paramètre ? | 546 | |||
\end{itemize} | 547 | |||
548 | ||||
Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations | 549 | |||
que nous avons identifi\'ees : | 550 | |||
\begin{itemize} | 551 | |||
\item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution | 552 | |||
de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes. | 553 | |||
\item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart | 554 | |||
et les paramètres internes de la t\^ache. | 555 | |||
\item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit | 556 | |||
sortant et des variables internes de la t\^ache. | 557 | |||
\item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$ | 558 | |||
\end{itemize} | 559 | |||
Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche, | 560 | |||
sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions. | 561 | |||
562 | ||||
Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit | 563 | |||
un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes : | 564 | |||
565 | ||||
\paragraph{Contrainte de pr\'ecision :} | 566 | |||
Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre : | 567 | |||
\begin{align*} | 568 | |||
\pi _i ^+ \geq \pi _j ^- | 569 | |||
\end{align*} | 570 | |||
571 | ||||
\paragraph{Contrainte de d\'ebit :} | 572 | |||
Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre : | 573 | |||
\begin{align*} | 574 | |||
d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache} | 575 | |||
\end{align*} | 576 | |||
577 | ||||
\paragraph{Contrainte de synchronisation :} | 578 | |||
Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles | 579 | |||
et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même. | 580 | |||
Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors : | 581 | |||
\begin{align*} | 582 | |||
\forall \text{ chemin } \mathcal{C}1(s, .., f), | 583 | |||
\forall \text{ chemin } \mathcal{C}2(s, .., f) | 584 | |||
\text{ tel que } \mathcal{C}1 \neq \mathcal{C}2 | 585 | |||
\Rightarrow | 586 | |||
\sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i | 587 | |||
\end{align*} | 588 | |||
589 | ||||
\paragraph{Contrainte de place :} | 590 | |||
Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ : | 591 |
ifcs2018_journal.tex
1 | % fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee | |||
2 | % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de | |||
3 | % rejection par bit et perte si moins de bits que rejection/6 | |||
4 | % developper programme lineaire en incluant le decalage de bits | |||
5 | % insister que avant on etait synthetisable mais pas implementable, alors que maintenant on | |||
6 | % implemente et on demontre que ca tourne | |||
7 | % gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ? | |||
8 | % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer | |||
9 | % (zedboard ou redpit) | |||
10 | ||||
11 | % ajouter pyramide "juste" | |||
12 | % label schema : verifier que "argumenter de la cascade de FIR" est fait | |||
13 | ||||
\documentclass[a4paper,conference]{IEEEtran/IEEEtran} | 1 | 14 | \documentclass[a4paper,conference]{IEEEtran/IEEEtran} | |
\usepackage{graphicx,color,hyperref} | 2 | 15 | \usepackage{graphicx,color,hyperref} | |
\usepackage{amsfonts} | 3 | 16 | \usepackage{amsfonts} | |
\usepackage{amsthm} | 4 | 17 | \usepackage{amsthm} | |
\usepackage{amssymb} | 5 | 18 | \usepackage{amssymb} | |
\usepackage{amsmath} | 6 | 19 | \usepackage{amsmath} | |
\usepackage{algorithm2e} | 7 | 20 | \usepackage{algorithm2e} | |
\usepackage{url,balance} | 8 | 21 | \usepackage{url,balance} | |
\usepackage[normalem]{ulem} | 9 | 22 | \usepackage[normalem]{ulem} | |
\usepackage{tikz} | 10 | 23 | \usepackage{tikz} | |
\usetikzlibrary{positioning,fit} | 11 | 24 | \usetikzlibrary{positioning,fit} | |
\usepackage{multirow} | 12 | 25 | \usepackage{multirow} | |
\usepackage{scalefnt} | 13 | 26 | \usepackage{scalefnt} | |
14 | 27 | |||
% correct bad hyphenation here | 15 | 28 | % correct bad hyphenation here | |
\hyphenation{op-tical net-works semi-conduc-tor} | 16 | 29 | \hyphenation{op-tical net-works semi-conduc-tor} | |
\textheight=26cm | 17 | 30 | \textheight=26cm | |
\setlength{\footskip}{30pt} | 18 | 31 | \setlength{\footskip}{30pt} | |
\pagenumbering{gobble} | 19 | 32 | \pagenumbering{gobble} | |
\begin{document} | 20 | 33 | \begin{document} | |
\title{Filter optimization for real time digital processing of radiofrequency signals: application | 21 | 34 | \title{Filter optimization for real time digital processing of radiofrequency signals: application | |
to oscillator metrology} | 22 | 35 | to oscillator metrology} | |
23 | 36 | |||
\author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, | 24 | 37 | \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, | |
G. Goavec-M\'erou\IEEEauthorrefmark{1}, | 25 | 38 | G. Goavec-M\'erou\IEEEauthorrefmark{1}, | |
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} | 26 | 39 | P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} | |
\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } | 27 | 40 | \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } | |
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ | 28 | 41 | \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ | |
Email: \{pyb2,jmfriedt\}@femto-st.fr} | 29 | 42 | Email: \{pyb2,jmfriedt\}@femto-st.fr} | |
} | 30 | 43 | } | |
\maketitle | 31 | 44 | \maketitle | |
\thispagestyle{plain} | 32 | 45 | \thispagestyle{plain} | |
\pagestyle{plain} | 33 | 46 | \pagestyle{plain} | |
\newtheorem{definition}{Definition} | 34 | 47 | \newtheorem{definition}{Definition} | |
35 | 48 | |||
\begin{abstract} | 36 | 49 | \begin{abstract} | |
Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to | 37 | 50 | Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to | |
radiofrequency signal processing. Applied to oscillator characterization in the context | 38 | 51 | radiofrequency signal processing. Applied to oscillator characterization in the context | |
of ultrastable clocks, stringent filtering requirements are defined by spurious signal or | 39 | 52 | of ultrastable clocks, stringent filtering requirements are defined by spurious signal or | |
noise rejection needs. Since real time radiofrequency processing must be performed in a | 40 | 53 | noise rejection needs. Since real time radiofrequency processing must be performed in a | |
Field Programmable Array to meet timing constraints, we investigate optimization strategies | 41 | 54 | Field Programmable Array to meet timing constraints, we investigate optimization strategies | |
to design filters meeting rejection characteristics while limiting the hardware resources | 42 | 55 | to design filters meeting rejection characteristics while limiting the hardware resources | |
required and keeping timing constraints within the targeted measurement bandwidths. | 43 | 56 | required and keeping timing constraints within the targeted measurement bandwidths. | |
\end{abstract} | 44 | 57 | \end{abstract} | |
45 | 58 | |||
\begin{IEEEkeywords} | 46 | 59 | \begin{IEEEkeywords} | |
Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter | 47 | 60 | Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter | |
\end{IEEEkeywords} | 48 | 61 | \end{IEEEkeywords} | |
49 | 62 | |||
\section{Digital signal processing of ultrastable clock signals} | 50 | 63 | \section{Digital signal processing of ultrastable clock signals} | |
51 | 64 | |||
Analog oscillator phase noise characteristics are classically performed by downconverting | 52 | 65 | Analog oscillator phase noise characteristics are classically performed by downconverting | |
the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, | 53 | 66 | the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, | |
followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In | 54 | 67 | followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In | |
a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by | 55 | 68 | a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by | |
multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. | 56 | 69 | multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. | |
57 | 70 | |||
\begin{figure}[h!tb] | 58 | 71 | \begin{figure}[h!tb] | |
\begin{center} | 59 | 72 | \begin{center} | |
\includegraphics[width=.8\linewidth]{images/schema} | 60 | 73 | \includegraphics[width=.8\linewidth]{images/schema} | |
\end{center} | 61 | 74 | \end{center} | |
\caption{Fully digital oscillator phase noise characterization: the Device Under Test | 62 | 75 | \caption{Fully digital oscillator phase noise characterization: the Device Under Test | |
(DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and | 63 | 76 | (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and | |
downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals | 64 | 77 | downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals | |
and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite | 65 | 78 | and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite | |
Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays | 66 | 79 | Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays | |
the spectral characteristics of the phase fluctuations.} | 67 | 80 | the spectral characteristics of the phase fluctuations.} | |
\label{schema} | 68 | 81 | \label{schema} | |
\end{figure} | 69 | 82 | \end{figure} | |
70 | 83 | |||
As with the analog mixer, | 71 | 84 | As with the analog mixer, | |
the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as | 72 | 85 | the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as | |
well as the generation of the frequency sum signal in addition to the frequency difference. | 73 | 86 | well as the generation of the frequency sum signal in addition to the frequency difference. | |
These unwanted spectral characteristics must be rejected before decimating the data stream | 74 | 87 | These unwanted spectral characteristics must be rejected before decimating the data stream | |
for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the | 75 | 88 | for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the | |
downconverter | 76 | 89 | downconverter | |
and the decimation processing blocks are core characteristics of an oscillator characterization | 77 | 90 | and the decimation processing blocks are core characteristics of an oscillator characterization | |
system, and must reject out-of-band signals below the targeted phase noise -- typically in the | 78 | 91 | system, and must reject out-of-band signals below the targeted phase noise -- typically in the | |
sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will | 79 | 92 | sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will | |
use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency | 80 | 93 | use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency | |
datastream: optimizing the performance of the filter while reducing the needed resources is | 81 | 94 | datastream: optimizing the performance of the filter while reducing the needed resources is | |
hence tackled in a systematic approach using optimization techniques. Most significantly, we | 82 | 95 | hence tackled in a systematic approach using optimization techniques. Most significantly, we | |
tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with | 83 | 96 | tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with | |
tunable number of coefficients and tunable number of bits representing the coefficients and the | 84 | 97 | tunable number of coefficients and tunable number of bits representing the coefficients and the | |
data being processed. | 85 | 98 | data being processed. | |
86 | 99 | |||
\section{Finite impulse response filter} | 87 | 100 | \section{Finite impulse response filter} | |
88 | 101 | |||
We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined | 89 | 102 | We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined | |
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the | 90 | 103 | by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the | |
outputs $y_k$ | 91 | 104 | outputs $y_k$ | |
\begin{align} | 92 | 105 | \begin{align} | |
y_n=\sum_{k=0}^N b_k x_{n-k} | 93 | 106 | y_n=\sum_{k=0}^N b_k x_{n-k} | |
\label{eq:fir_equation} | 94 | 107 | \label{eq:fir_equation} | |
\end{align} | 95 | 108 | \end{align} | |
96 | 109 | |||
As opposed to an implementation on a general purpose processor in which word size is defined by the | 97 | 110 | As opposed to an implementation on a general purpose processor in which word size is defined by the | |
processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since | 98 | 111 | processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since | |
not only the coefficient values and number of taps must be defined, but also the number of bits | 99 | 112 | not only the coefficient values and number of taps must be defined, but also the number of bits | |
defining the coefficients and the sample size. For this reason, and because we consider pipeline | 100 | 113 | defining the coefficients and the sample size. For this reason, and because we consider pipeline | |
processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency | 101 | 114 | processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency | |
signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but | 102 | 115 | signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but | |
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level. | 103 | 116 | the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level. | |
Since latency is not an issue in a openloop phase noise characterization instrument, the large | 104 | 117 | Since latency is not an issue in a openloop phase noise characterization instrument, the large | |
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, | 105 | 118 | numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, | |
is not considered as an issue as would be in a closed loop system. | 106 | 119 | is not considered as an issue as would be in a closed loop system. | |
107 | 120 | |||
The coefficients are classically expressed as floating point values. However, this binary | 108 | 121 | The coefficients are classically expressed as floating point values. However, this binary | |
number representation is not efficient for fast arithmetic computation by an FPGA. Instead, | 109 | 122 | number representation is not efficient for fast arithmetic computation by an FPGA. Instead, | |
we select to quantify these floating point values into integer values. This quantization | 110 | 123 | we select to quantify these floating point values into integer values. This quantization | |
will result in some precision loss. | 111 | 124 | will result in some precision loss. | |
112 | 125 | |||
\begin{figure}[h!tb] | 113 | 126 | \begin{figure}[h!tb] | |
\includegraphics[width=\linewidth]{images/zero_values} | 114 | 127 | \includegraphics[width=\linewidth]{images/zero_values} | |
\caption{Impact of the quantization resolution of the coefficients: the quantization is | 115 | 128 | \caption{Impact of the quantization resolution of the coefficients: the quantization is | |
set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting | 116 | 129 | set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting | |
the 30~first and 30~last coefficients out of the initial 128~band-pass | 117 | 130 | the 30~first and 30~last coefficients out of the initial 128~band-pass | |
filter coefficients to 0 (red dots).} | 118 | 131 | filter coefficients to 0 (red dots).} | |
\label{float_vs_int} | 119 | 132 | \label{float_vs_int} | |
\end{figure} | 120 | 133 | \end{figure} | |
121 | 134 | |||
The tradeoff between quantization resolution and number of coefficients when considering | 122 | 135 | The tradeoff between quantization resolution and number of coefficients when considering | |
integer operations is not trivial. As an illustration of the issue related to the | 123 | 136 | integer operations is not trivial. As an illustration of the issue related to the | |
relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits | 124 | 137 | relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits | |
a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon | 125 | 138 | a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon | |
quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the | 126 | 139 | quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the | |
taps become null, making the large number of coefficients irrelevant and allowing to save | 127 | 140 | taps become null, making the large number of coefficients irrelevant and allowing to save | |
processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources | 128 | 141 | processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources | |
to reach a given rejection level, or maximizing out of band rejection for a given computational | 129 | 142 | to reach a given rejection level, or maximizing out of band rejection for a given computational | |
resource, will drive the investigation on cascading filters designed with varying tap resolution | 130 | 143 | resource, will drive the investigation on cascading filters designed with varying tap resolution | |
and tap length, as will be shown in the next section. Indeed, our development strategy closely | 131 | 144 | and tap length, as will be shown in the next section. Indeed, our development strategy closely | |
follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} | 132 | 145 | follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} | |
in which basic blocks are defined and characterized before being assembled \cite{hide} | 133 | 146 | in which basic blocks are defined and characterized before being assembled \cite{hide} | |
in a complete processing chain. In our case, assembling the filter blocks is a simpler block | 134 | 147 | in a complete processing chain. In our case, assembling the filter blocks is a simpler block | |
combination process since we assume a single value to be processed and a single value to be | 135 | 148 | combination process since we assume a single value to be processed and a single value to be | |
generated at each clock cycle. The FIR filters will not be considered to decimate in the | 136 | 149 | generated at each clock cycle. The FIR filters will not be considered to decimate in the | |
current implementation: the decimation is assumed to be located after the FIR cascade at the | 137 | 150 | current implementation: the decimation is assumed to be located after the FIR cascade at the | |
moment. | 138 | 151 | moment. | |
139 | 152 | |||
\section{Methodology description} | 140 | 153 | \section{Methodology description} | |
We want create a new methodology to develop any Digital Signal Processing (DSP) chain | 141 | 154 | We want create a new methodology to develop any Digital Signal Processing (DSP) chain | |
and for any hardware platform (Altera, Xilinx...). To do this we have defined an | 142 | 155 | and for any hardware platform (Altera, Xilinx...). To do this we have defined an | |
abstract model to represent some basic operations of DSP. | 143 | 156 | abstract model to represent some basic operations of DSP. | |
144 | 157 | |||
For the moment, we are focused on only two operations: the filtering and the shifting of data. | 145 | 158 | For the moment, we are focused on only two operations: the filtering and the shifting of data. | |
We have chosen this basic operation because the shifting and the filtering have already be studied in | 146 | 159 | We have chosen this basic operation because the shifting and the filtering have already be studied in | |
lot of works \cite{lim_1996, lim_1988, young_1992, smith_1998} hence it will be easier | 147 | 160 | lot of works \cite{lim_1996, lim_1988, young_1992, smith_1998} hence it will be easier | |
to check and validate our results. | 148 | 161 | to check and validate our results. | |
149 | 162 | |||
However having only two operations is insufficient to work with complex DSP but | 150 | 163 | However having only two operations is insufficient to work with complex DSP but | |
in this paper we only want demonstrate the relevance and the efficiency of our approach. | 151 | 164 | in this paper we only want demonstrate the relevance and the efficiency of our approach. | |
In future work it will be possible to add more operations and we are able to | 152 | 165 | In future work it will be possible to add more operations and we are able to | |
model any DSP chain. | 153 | 166 | model any DSP chain. | |
154 | 167 | |||
We will apply our methodology on very simple DSP chain. We generate a digital signal | 155 | 168 | We will apply our methodology on very simple DSP chain. We generate a digital signal | |
thanks at generator of Pseudo-Random Number (PRN) or thanks at an Analog to Digital | 156 | 169 | thanks at generator of Pseudo-Random Number (PRN) or thanks at an Analog to Digital | |
Converter (ADC). Once we have a digital signal, we filter it to decrease the noise level. | 157 | 170 | Converter (ADC). Once we have a digital signal, we filter it to decrease the noise level. | |
Finally we stored some burst of filtered samples before post-processing it. | 158 | 171 | Finally we stored some burst of filtered samples before post-processing it. | |
% TODO: faire un schéma | 159 | 172 | % TODO: faire un schéma | |
In this particular case, we want optimize the filtering step to have the best noise | 160 | 173 | In this particular case, we want optimize the filtering step to have the best noise | |
rejection for constrain number of resource or to have the minimal resources | 161 | 174 | rejection for constrain number of resource or to have the minimal resources | |
consumption for a given rejection objective. | 162 | 175 | consumption for a given rejection objective. | |
163 | 176 | |||
The first step of our approach is to model the DSP chain and since we just optimize | 164 | 177 | The first step of our approach is to model the DSP chain and since we just optimize | |
the filtering, we have not modeling the PRN generator or the ADC. The filtering can be | 165 | 178 | the filtering, we have not modeling the PRN generator or the ADC. The filtering can be | |
done by two ways. The first one we use only one FIR filter with lot of coefficients | 166 | 179 | done by two ways. The first one we use only one FIR filter with lot of coefficients | |
to rejection the noise, we called this approach a monolithic approach. And the second one | 167 | 180 | to rejection the noise, we called this approach a monolithic approach. And the second one | |
we select different FIR filters with less coefficients the monolithic filter and we cascaded | 168 | 181 | we select different FIR filters with less coefficients the monolithic filter and we cascaded | |
it to filtering the signal. | 169 | 182 | it to filtering the signal. | |
170 | 183 | |||
After each filter we leave the possibility of shifting the filtered data to consume | 171 | 184 | After each filter we leave the possibility of shifting the filtered data to consume | |
less resources. Hence in the case of cascaded filter, we define a stage as a filter | 172 | 185 | less resources. Hence in the case of cascaded filter, we define a stage as a filter | |
and a shifter (the shift could be omitted if we do not need to divide the filtered data). | 173 | 186 | and a shifter (the shift could be omitted if we do not need to divide the filtered data). | |
174 | 187 | |||
\subsection{Model of a FIR filter} | 175 | 188 | \subsection{Model of a FIR filter} | |
A cascade of filter are composed of $n$ stage. In stage $i$ ($1 \leq i \leq n$) | 176 | 189 | A cascade of filter are composed of $n$ stage. In stage $i$ ($1 \leq i \leq n$) | |
the FIR has $C_i$ coefficients and each coefficients are integer values with $\pi^C_i$ | 177 | 190 | the FIR has $C_i$ coefficients and each coefficients are integer values with $\pi^C_i$ | |
bits and the filtered data are shifted of $\pi^S_i$ bits. We define also $\pi^-_i$ as | 178 | 191 | bits and the filtered data are shifted of $\pi^S_i$ bits. We define also $\pi^-_i$ as | |
the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage} | 179 | 192 | the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage} | |
shows a filtering stage. | 180 | 193 | shows a filtering stage. | |
181 | 194 | |||
\begin{figure} | 182 | 195 | \begin{figure} | |
\centering | 183 | 196 | \centering | |
\begin{tikzpicture}[node distance=2cm] | 184 | 197 | \begin{tikzpicture}[node distance=2cm] | |
\node[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ; | 185 | 198 | \node[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ; | |
\node[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ; | 186 | 199 | \node[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ; | |
\node (Start) [left of=FIR] { } ; | 187 | 200 | \node (Start) [left of=FIR] { } ; | |
\node (End) [right of=Shift] { } ; | 188 | 201 | \node (End) [right of=Shift] { } ; | |
189 | 202 | |||
\node[draw,fit=(FIR) (Shift)] (Filter) { } ; | 190 | 203 | \node[draw,fit=(FIR) (Shift)] (Filter) { } ; | |
191 | 204 | |||
\draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ; | 192 | 205 | \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ; | |
\draw[->] (FIR) -- (Shift) ; | 193 | 206 | \draw[->] (FIR) -- (Shift) ; | |
\draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ; | 194 | 207 | \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ; | |
\end{tikzpicture} | 195 | 208 | \end{tikzpicture} | |
\caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)} | 196 | 209 | \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)} | |
\label{fig:fir_stage} | 197 | 210 | \label{fig:fir_stage} | |
\end{figure} | 198 | 211 | \end{figure} | |
199 | 212 | |||
FIR $i$ can reject $F(C_i, \pi_i^C)$ dB. $F$ is determined numerically. | 200 | 213 | FIR $i$ can reject $F(C_i, \pi_i^C)$ dB. $F$ is determined numerically. | |
To measure this rejection, we use GNU Octave software to design FIR filter coefficients thanks to two | 201 | 214 | To measure this rejection, we use GNU Octave software to design FIR filter coefficients thanks to two | |
algorithms (\texttt{firls} and \texttt{fir1}). | 202 | 215 | algorithms (\texttt{firls} and \texttt{fir1}). | |
For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients. | 203 | 216 | For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients. | |
Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively, | 204 | 217 | Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively, | |
the coefficients are normalized by their absolute maximum before being scaled to integer coefficients. | 205 | 218 | the coefficients are normalized by their absolute maximum before being scaled to integer coefficients. | |
At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the other are coded on very fewer bits. | 206 | 219 | At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the other are coded on very fewer bits. | |
207 | 220 | |||
With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter. | 208 | 221 | With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter. | |
Comparing the performance between FIRs requires however a unique criterion. As shown in figure~\ref{fig:fir_mag}, | 209 | 222 | Comparing the performance between FIRs requires however a unique criterion. As shown in figure~\ref{fig:fir_mag}, | |
the FIR magnitude exhibits two parts. | 210 | 223 | the FIR magnitude exhibits two parts. | |
211 | 224 | |||
\begin{figure} | 212 | 225 | \begin{figure} | |
\centering | 213 | 226 | \centering | |
\begin{tikzpicture}[scale=0.3] | 214 | 227 | \begin{tikzpicture}[scale=0.3] | |
\draw[<->] (0,15) -- (0,0) -- (21,0) ; | 215 | 228 | \draw[<->] (0,15) -- (0,0) -- (21,0) ; | |
\draw[thick] (0,12) -- (8,12) -- (20,0) ; | 216 | 229 | \draw[thick] (0,12) -- (8,12) -- (20,0) ; | |
217 | 230 | |||
\draw (0,14) node [left] { $P$ } ; | 218 | 231 | \draw (0,14) node [left] { $P$ } ; | |
\draw (20,0) node [below] { $f$ } ; | 219 | 232 | \draw (20,0) node [below] { $f$ } ; | |
220 | 233 | |||
\draw[>=latex,<->] (0,14) -- (8,14) ; | 221 | 234 | \draw[>=latex,<->] (0,14) -- (8,14) ; | |
\draw (4,14) node [above] { passband } node [below] { $40\%$ } ; | 222 | 235 | \draw (4,14) node [above] { passband } node [below] { $40\%$ } ; | |
223 | 236 | |||
\draw[>=latex,<->] (8,14) -- (12,14) ; | 224 | 237 | \draw[>=latex,<->] (8,14) -- (12,14) ; | |
\draw (10,14) node [above] { transition } node [below] { $20\%$ } ; | 225 | 238 | \draw (10,14) node [above] { transition } node [below] { $20\%$ } ; | |
226 | 239 | |||
\draw[>=latex,<->] (12,14) -- (20,14) ; | 227 | 240 | \draw[>=latex,<->] (12,14) -- (20,14) ; | |
\draw (16,14) node [above] { stopband } node [below] { $40\%$ } ; | 228 | 241 | \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ; | |
229 | 242 | |||
\draw[>=latex,<->] (16,12) -- (16,8) ; | 230 | 243 | \draw[>=latex,<->] (16,12) -- (16,8) ; | |
\draw (16,10) node [right] { rejection } ; | 231 | 244 | \draw (16,10) node [right] { rejection } ; | |
232 | 245 | |||
\draw[dashed] (8,-1) -- (8,14) ; | 233 | 246 | \draw[dashed] (8,-1) -- (8,14) ; | |
\draw[dashed] (12,-1) -- (12,14) ; | 234 | 247 | \draw[dashed] (12,-1) -- (12,14) ; | |
235 | 248 | |||
\draw[dashed] (8,12) -- (16,12) ; | 236 | 249 | \draw[dashed] (8,12) -- (16,12) ; | |
\draw[dashed] (12,8) -- (16,8) ; | 237 | 250 | \draw[dashed] (12,8) -- (16,8) ; | |
238 | 251 | |||
\end{tikzpicture} | 239 | 252 | \end{tikzpicture} | |
240 | 253 | |||
% \includegraphics[width=.5\linewidth]{images/fir_magnitude} | 241 | 254 | % \includegraphics[width=.5\linewidth]{images/fir_magnitude} | |
\caption{Shape of the filter transmitted power $P$ as a function of frequency $f$: | 242 | 255 | \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$: | |
the passband is considered to occupy the initial 40\% of the Nyquist frequency range, | 243 | 256 | the passband is considered to occupy the initial 40\% of the Nyquist frequency range, | |
the stopband the last 40\%, allowing 20\% transition width.} | 244 | 257 | the stopband the last 40\%, allowing 20\% transition width.} | |
\label{fig:fir_mag} | 245 | 258 | \label{fig:fir_mag} | |
\end{figure} | 246 | 259 | \end{figure} | |
247 | 260 | |||
In the transition band, the behavior of the filter is left free, we only care about the passband and the stopband. | 248 | 261 | In the transition band, the behavior of the filter is left free, we only care about the passband and the stopband. | |
Our first criterion considers the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion does not work because we do not consider the shape of the passband. | 249 | 262 | Our first criterion considers the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion does not work because we do not consider the shape of the passband. | |
A second criterion considers the maximum rejection within the stopband minus the mean of the absolute value of passband rejection. With this criterion, the results are significantly improved as shown in figure~\ref{fig:custom_criterion}. | 250 | 263 | A second criterion considers the maximum rejection within the stopband minus the mean of the absolute value of passband rejection. With this criterion, the results are significantly improved as shown in figure~\ref{fig:custom_criterion}. | |
251 | 264 | |||
\begin{figure} | 252 | 265 | \begin{figure} | |
\centering | 253 | 266 | \centering | |
\includegraphics[width=\linewidth]{images/colored_mean_criterion} | 254 | 267 | \includegraphics[width=\linewidth]{images/colored_mean_criterion} | |
\caption{Mean criterion comparison between monolithic filter and cascade filters} | 255 | 268 | \caption{Mean criterion comparison between monolithic filter and cascade filters} | |
\label{fig:mean_criterion} | 256 | 269 | \label{fig:mean_criterion} | |
\end{figure} | 257 | 270 | \end{figure} | |
258 | 271 | |||
\begin{figure} | 259 | 272 | \begin{figure} | |
\centering | 260 | 273 | \centering | |
\includegraphics[width=\linewidth]{images/colored_custom_criterion} | 261 | 274 | \includegraphics[width=\linewidth]{images/colored_custom_criterion} | |
\caption{Custom criterion comparison between monolithic filter and cascade filters} | 262 | 275 | \caption{Custom criterion comparison between monolithic filter and cascade filters} | |
\label{fig:custom_criterion} | 263 | 276 | \label{fig:custom_criterion} | |
\end{figure} | 264 | 277 | \end{figure} | |
265 | 278 | |||
Although we have a efficient criterion to estimate the rejection of one set of coefficient | 266 | 279 | Although we have a efficient criterion to estimate the rejection of one set of coefficient | |
we have a problem when we sum two or more criterion. If the FIR filter coefficients are the same | 267 | 280 | we have a problem when we sum two or more criterion. If the FIR filter coefficients are the same | |
between the stage, we have: | 268 | 281 | between the stage, we have: | |
$$F_{total} = F_1 + F_2$$ | 269 | 282 | $$F_{total} = F_1 + F_2$$ | |
But when we choose two different set of coefficient, the previous equality are not | 270 | 283 | But when we choose two different set of coefficient, the previous equality are not | |
true. The figure~\ref{fig:sum_rejection} illustrates the problem. The red and blue curves | 271 | 284 | true. The figure~\ref{fig:sum_rejection} illustrates the problem. The red and blue curves | |
are two different filter coefficient and we can see that their maximum on the stopband | 272 | 285 | are two different filter coefficient and we can see that their maximum on the stopband | |
are not at the same frequency. So when we sum the rejection criteria (the dotted yellow line) | 273 | 286 | are not at the same frequency. So when we sum the rejection criteria (the dotted yellow line) | |
we do not meet the dashed yellow line. Define the rejection of cascaded filters | 274 | 287 | we do not meet the dashed yellow line. Define the rejection of cascaded filters | |
is more difficult than just take the summation between all the rejection criteria of each filter. | 275 | 288 | is more difficult than just take the summation between all the rejection criteria of each filter. | |
However this summation gives us an upper bound for rejection although in fact we obtain | 276 | 289 | However this summation gives us an upper bound for rejection although in fact we obtain | |
better rejection than expected. | 277 | 290 | better rejection than expected. | |
278 | 291 | |||
\begin{figure} | 279 | 292 | \begin{figure} | |
\centering | 280 | 293 | \centering | |
\includegraphics[width=\linewidth]{images/cascaded_criterion} | 281 | 294 | \includegraphics[width=\linewidth]{images/cascaded_criterion} | |
\caption{Rejection of two cascaded filters} | 282 | 295 | \caption{Rejection of two cascaded filters} | |
\label{fig:sum_rejection} | 283 | 296 | \label{fig:sum_rejection} | |
\end{figure} | 284 | 297 | \end{figure} | |
285 | 298 | |||
The first problem we address is to maximize the rejection under bounded silicon area | 286 | 299 | The first problem we address is to maximize the rejection under bounded silicon area | |
and feasibility constraints. Variable $a_i$ is the area taken by filter~$i$ | 287 | 300 | and feasibility constraints. Variable $a_i$ is the area taken by filter~$i$ | |
(in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB). | 288 | 301 | (in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB). | |
Constant $\mathcal{A}$ is the total available area. We model our problem as follows: | 289 | 302 | Constant $\mathcal{A}$ is the total available area. We model our problem as follows: | |
290 | 303 | |||
Finally we can describe our abstract model with following expressions : | 291 | 304 | Finally we can describe our abstract model with following expressions : | |
\begin{align} | 292 | 305 | \begin{align} | |
\text{Maximize } & \sum_{i=1}^n r_i \notag \\ | 293 | 306 | \text{Maximize } & \sum_{i=1}^n r_i \notag \\ | |
\sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\ | 294 | 307 | \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\ | |
a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\ | 295 | 308 | a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\ | |
r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\ | 296 | 309 | r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\ | |
\pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\ | 297 | 310 | \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\ | |
\pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\ | 298 | 311 | \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\ | |
\pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\ | 299 | 312 | \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\ | |
\pi_1^- &= \Pi^I \label{eq:init} | 300 | 313 | \pi_1^- &= \Pi^I \label{eq:init} | |
\end{align} | 301 | 314 | \end{align} | |
302 | 315 | |||
Equation~\ref{eq:area} states that the total area taken by the filters must be | 303 | 316 | Equation~\ref{eq:area} states that the total area taken by the filters must be | |
less than the available area. Equation~\ref{eq:areadef} gives the definition of | 304 | 317 | less than the available area. Equation~\ref{eq:areadef} gives the definition of | |
the area for a filter. More precisely, it is the area of the FIR as the Shifter | 305 | 318 | the area for a filter. More precisely, it is the area of the FIR as the Shifter | |
does not need any circuitry. We consider that the FIR needs $C_i$ registers of size | 306 | 319 | does not need any circuitry. We consider that the FIR needs $C_i$ registers of size | |
$\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the | 307 | 320 | $\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the | |
input data and the coefficients. Equation~\ref{eq:rejectiondef} gives the | 308 | 321 | input data and the coefficients. Equation~\ref{eq:rejectiondef} gives the | |
definition of the rejection of the filter thanks to function~$F$ that we defined | 309 | 322 | definition of the rejection of the filter thanks to function~$F$ that we defined | |
previously. The Shifter does not introduce negative rejection as we explain later, | 310 | 323 | previously. The Shifter does not introduce negative rejection as we explain later, | |
so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the | 311 | 324 | so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the | |
relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add | 312 | 325 | relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add | |
$\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes | 313 | 326 | $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes | |
$\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of | 314 | 327 | $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of | |
a filter is the same as the input number of bits of the next filter. | 315 | 328 | a filter is the same as the input number of bits of the next filter. | |
Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative | 316 | 329 | Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative | |
rejection. Indeed, the results of the FIR can be right shifted without compromising | 317 | 330 | rejection. Indeed, the results of the FIR can be right shifted without compromising | |
the quality of the rejection until a threshold. Each bit of the output data | 318 | 331 | the quality of the rejection until a threshold. Each bit of the output data | |
increases the maximum rejection level of 6~dB. We add one to take the sign bit | 319 | 332 | increases the maximum rejection level of 6~dB. We add one to take the sign bit | |
into account. If equation~\ref{eq:maxshift} was not present, the Shifter could | 320 | 333 | into account. If equation~\ref{eq:maxshift} was not present, the Shifter could | |
shift too much and introduce some noise in the output data. Each supplementary | 321 | 334 | shift too much and introduce some noise in the output data. Each supplementary | |
shift bit would cause 6~dB of noise. A totally equivalent equation is: | 322 | 335 | shift bit would cause 6~dB of noise. A totally equivalent equation is: | |
$\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right) $. | 323 | 336 | $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right) $. | |
Finally, equation~\ref{eq:init} gives the global input's number of bits. | 324 | 337 | Finally, equation~\ref{eq:init} gives the global input's number of bits. | |
325 | 338 | |||
This model is non-linear and even non-quadratic, as $F$ does not have a known | 326 | 339 | This model is non-linear and even non-quadratic, as $F$ does not have a known | |
linear or quadratic expression. We introduce $p$ FIR configurations | 327 | 340 | linear or quadratic expression. We introduce $p$ FIR configurations | |
$(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants. We define binary | 328 | 341 | $(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants. We define binary | |
variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$ | 329 | 342 | variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$ | |
and 0 otherwise. The new equations are as follows: | 330 | 343 | and 0 otherwise. The new equations are as follows: | |
331 | 344 | |||
\begin{align} | 332 | 345 | \begin{align} | |
a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\ | 333 | 346 | a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\ | |
r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\ | 334 | 347 | r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\ | |
\pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\ | 335 | 348 | \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\ | |
\sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config} | 336 | 349 | \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config} | |
\end{align} | 337 | 350 | \end{align} | |
338 | 351 | |||
Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace | 339 | 352 | Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace | |
respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}. | 340 | 353 | respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}. | |
Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most. | 341 | 354 | Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most. | |
342 | 355 | |||
This modified model is quadratic, and it can be linearised if necessary. The Gurobi | 343 | 356 | This modified model is quadratic, and it can be linearised if necessary. The Gurobi | |
(\url{www.gurobi.com}) optimization software is used to solve this quadratic | 344 | 357 | (\url{www.gurobi.com}) optimization software is used to solve this quadratic | |
model, and since Gurobi is able to linearize, the model is left as is. This model | 345 | 358 | model, and since Gurobi is able to linearize, the model is left as is. This model | |
has $O(np)$ variables and $O(n)$ constraints. | 346 | 359 | has $O(np)$ variables and $O(n)$ constraints. | |
347 | 360 | |||
The section~\ref{sec:fixed_area} shows the results for the first version of quadratic program but the section~\ref{sec:fixed_rej} | 348 | 361 | The section~\ref{sec:fixed_area} shows the results for the first version of quadratic program but the section~\ref{sec:fixed_rej} | |
presents the results for the complementary problem. In this case we want | 349 | 362 | presents the results for the complementary problem. In this case we want | |
minimize the occupied area for a targeted rejection level. Hence we have replace | 350 | 363 | minimize the occupied area for a targeted rejection level. Hence we have replace | |
the objective function with: | 351 | 364 | the objective function with: | |
\begin{align} | 352 | 365 | \begin{align} | |
\text{Minimize } & \sum_{i=1}^n a_i \notag | 353 | 366 | \text{Minimize } & \sum_{i=1}^n a_i \notag | |
\end{align} | 354 | 367 | \end{align} | |
We adapt our constraints of quadratic program to replace the equation \ref{eq:area} | 355 | 368 | We adapt our constraints of quadratic program to replace the equation \ref{eq:area} | |
by the equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal | 356 | 369 | by the equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal | |
rejection required. | 357 | 370 | rejection required. | |
358 | 371 | |||
\begin{align} | 359 | 372 | \begin{align} | |
\sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min} | 360 | 373 | \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min} | |
\end{align} | 361 | 374 | \end{align} | |
362 | 375 | |||
\section{Design workflow} | 363 | 376 | \section{Design workflow} | |
\label{sec:workflow} | 364 | 377 | \label{sec:workflow} | |
365 | 378 | |||
In this section, we describe the workflow to compute all the results presented in section~\ref{sec:fixed_area}. | 366 | 379 | In this section, we describe the workflow to compute all the results presented in section~\ref{sec:fixed_area}. | |
Figure~\ref{fig:workflow} shows the global workflow and the different steps involved in the computations of the results. | 367 | 380 | Figure~\ref{fig:workflow} shows the global workflow and the different steps involved in the computations of the results. | |
368 | 381 | |||
\begin{figure} | 369 | 382 | \begin{figure} | |
\centering | 370 | 383 | \centering | |
\begin{tikzpicture}[node distance=0.75cm and 2cm] | 371 | 384 | \begin{tikzpicture}[node distance=0.75cm and 2cm] | |
\node[draw,minimum size=1cm] (Solver) { Filter Solver } ; | 372 | 385 | \node[draw,minimum size=1cm] (Solver) { Filter Solver } ; | |
\node (Start) [left= 3cm of Solver] { } ; | 373 | 386 | \node (Start) [left= 3cm of Solver] { } ; | |
\node[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ; | 374 | 387 | \node[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ; | |
\node (Input) [above= of TCL] { } ; | 375 | 388 | \node (Input) [above= of TCL] { } ; | |
\node[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ; | 376 | 389 | \node[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ; | |
\node[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ; | 377 | 390 | \node[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ; | |
\node[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ; | 378 | 391 | \node[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ; | |
\node[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ; | 379 | 392 | \node[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ; | |
\node (Results) [left= of Postproc] { } ; | 380 | 393 | \node (Results) [left= of Postproc] { } ; | |
381 | 394 | |||
\draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ; | 382 | 395 | \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ; | |
\draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ; | 383 | 396 | \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ; | |
\draw[->] (Solver) edge node [below] { (1a) } (TCL) ; | 384 | 397 | \draw[->] (Solver) edge node [below] { (1a) } (TCL) ; | |
\draw[->] (Solver) edge node [right] { (1b) } (Deploy) ; | 385 | 398 | \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ; | |
\draw[->] (TCL) edge node [left] { (2) } (Bitstream) ; | 386 | 399 | \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ; | |
\draw[->,dashed] (Bitstream) -- (Deploy) ; | 387 | 400 | \draw[->,dashed] (Bitstream) -- (Deploy) ; | |
\draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ; | 388 | 401 | \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ; | |
\draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ; | 389 | 402 | \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ; | |
\draw[->] (Deploy) edge node [left] { (5) } (Postproc) ; | 390 | 403 | \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ; | |
\draw[->] (Postproc) -- (Results) ; | 391 | 404 | \draw[->] (Postproc) -- (Results) ; | |
\end{tikzpicture} | 392 | 405 | \end{tikzpicture} | |
\caption{Design workflow from the input parameters to the results} | 393 | 406 | \caption{Design workflow from the input parameters to the results} | |
\label{fig:workflow} | 394 | 407 | \label{fig:workflow} | |
\end{figure} | 395 | 408 | \end{figure} | |
396 | 409 | |||
The filter solver is a C++ program that takes as input the maximum area | 397 | 410 | The filter solver is a C++ program that takes as input the maximum area | |
$\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$, | 398 | 411 | $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$, | |
the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates | 399 | 412 | the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates | |
the quadratic programs and uses the Gurobi solver to get the optimal results. | 400 | 413 | the quadratic programs and uses the Gurobi solver to get the optimal results. | |
Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow}) | 401 | 414 | Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow}) | |
and a deploy script ((1b) on figure~\ref{fig:workflow}). | 402 | 415 | and a deploy script ((1b) on figure~\ref{fig:workflow}). | |
403 | 416 | |||
The TCL script describes the whole digital processing chain from the beginning | 404 | 417 | The TCL script describes the whole digital processing chain from the beginning | |
(the raw signal data) to the end (the filtered data). | 405 | 418 | (the raw signal data) to the end (the filtered data). | |
The raw input data generated from a Pseudo Random Number (PRN) | 406 | 419 | The raw input data generated from a Pseudo Random Number (PRN) | |
generator inside the FPGA and $\Pi^I$ is fixed at 16~bits. | 407 | 420 | generator inside the FPGA and $\Pi^I$ is fixed at 16~bits. | |
Then the script builds each stage of the chain with a generic FIR task that | 408 | 421 | Then the script builds each stage of the chain with a generic FIR task that | |
comes from a skeleton library. The generic FIR is highly configurable | 409 | 422 | comes from a skeleton library. The generic FIR is highly configurable | |
with the number of coefficients and the size of the coefficients. The coefficients | 410 | 423 | with the number of coefficients and the size of the coefficients. The coefficients | |
themselves are not stored in the script. | 411 | 424 | themselves are not stored in the script. | |
Whereas the signal is processed in real-time, the output signal is stored as | 412 | 425 | Whereas the signal is processed in real-time, the output signal is stored as | |
consecutive bursts of data. | 413 | 426 | consecutive bursts of data. | |
414 | 427 | |||
The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}). | 415 | 428 | The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}). | |
We use the 2018.2 version of Xilinx Vivado and we execute the synthesized | 416 | 429 | We use the 2018.2 version of Xilinx Vivado and we execute the synthesized | |
bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series | 417 | 430 | bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series | |
FPGA (xc7z010clg400-1) and two 125~MS/s ADC. | 418 | 431 | FPGA (xc7z010clg400-1) and two 125~MS/s ADC. | |
The board works with a Buildroot Linux image. We have developed some tools and | 419 | 432 | The board works with a Buildroot Linux image. We have developed some tools and | |
drivers to flash and communicate with the FPGA. They are used to automatize all | 420 | 433 | drivers to flash and communicate with the FPGA. They are used to automatize all | |
the workflow inside the board: load the filter coefficients and retrieve the | 421 | 434 | the workflow inside the board: load the filter coefficients and retrieve the | |
computed data. | 422 | 435 | computed data. | |
423 | 436 | |||
The deploy script uploads the bitstream to the board ((3) on | 424 | 437 | The deploy script uploads the bitstream to the board ((3) on | |
figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers, | 425 | 438 | figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers, | |
configures the coefficients of the FIR filters. It then waits for the results | 426 | 439 | configures the coefficients of the FIR filters. It then waits for the results | |
and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}). | 427 | 440 | and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}). | |
428 | 441 | |||
Finally, an Octave post-processing script computes the final results thanks to | 429 | 442 | Finally, an Octave post-processing script computes the final results thanks to | |
the output data ((5) on figure~\ref{fig:workflow}). | 430 | 443 | the output data ((5) on figure~\ref{fig:workflow}). | |
The results are normalized so that the Power Spectrum Density (PSD) starts at zero | 431 | 444 | The results are normalized so that the Power Spectrum Density (PSD) starts at zero | |
and the different configurations can be compared. | 432 | 445 | and the different configurations can be compared. | |
433 | 446 | |||
The workflow used to compute the results in section~\ref{sec:fixed_rej}, we | 434 | 447 | The workflow used to compute the results in section~\ref{sec:fixed_rej}, we | |
have just adapted the quadratic program but the rest of the workflow is unchanged. | 435 | 448 | have just adapted the quadratic program but the rest of the workflow is unchanged. | |
436 | 449 | |||
\section{Experiments with fixed area space} | 437 | 450 | \section{Experiments with fixed area space} | |
\label{sec:fixed_area} | 438 | 451 | \label{sec:fixed_area} | |
This section presents the output of the filter solver {\em i.e.} the computed | 439 | 452 | This section presents the output of the filter solver {\em i.e.} the computed | |
configurations for each stage, the computed rejection and the computed silicon area. | 440 | 453 | configurations for each stage, the computed rejection and the computed silicon area. | |
This is interesting to understand the choices made by the solver to compute its solutions. | 441 | 454 | This is interesting to understand the choices made by the solver to compute its solutions. | |
442 | 455 | |||
The experimental setup is composed of three cases. The raw input is generated | 443 | 456 | The experimental setup is composed of three cases. The raw input is generated | |
by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$. | 444 | 457 | by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$. | |
Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500 | 445 | 458 | Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500 | |
arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500. | 446 | 459 | arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500. | |
The number of configurations $p$ is 1827, with $C_i$ ranging from 3 to 60 and $\pi^C$ | 447 | 460 | The number of configurations $p$ is 1827, with $C_i$ ranging from 3 to 60 and $\pi^C$ | |
ranging from 2 to 22. In each case, the quadratic program has been able to give a | 448 | 461 | ranging from 2 to 22. In each case, the quadratic program has been able to give a | |
result up to five stages ($n = 5$) in the cascaded filter. | 449 | 462 | result up to five stages ($n = 5$) in the cascaded filter. | |
450 | 463 | |||
Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500. | 451 | 464 | Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500. | |
Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000. | 452 | 465 | Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000. | |
Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500. | 453 | 466 | Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500. | |
454 | 467 | |||
\renewcommand{\arraystretch}{1.4} | 455 | 468 | \renewcommand{\arraystretch}{1.4} | |
456 | 469 | |||
\begin{table} | 457 | 470 | \begin{table} | |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500} | 458 | 471 | \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500} | |
\label{tbl:gurobi_max_500} | 459 | 472 | \label{tbl:gurobi_max_500} | |
\centering | 460 | 473 | \centering | |
{\scalefont{0.77} | 461 | 474 | {\scalefont{0.77} | |
\begin{tabular}{|c|ccccc|c|c|} | 462 | 475 | \begin{tabular}{|c|ccccc|c|c|} | |
\hline | 463 | 476 | \hline | |
$n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | 464 | 477 | $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | |
\hline | 465 | 478 | \hline | |
1 & (21, 7, 0) & - & - & - & - & 32~dB & 483 \\ | 466 | 479 | 1 & (21, 7, 0) & - & - & - & - & 32~dB & 483 \\ | |
2 & (3, 3, 15) & (31, 9, 0) & - & - & - & 58~dB & 460 \\ | 467 | 480 | 2 & (3, 3, 15) & (31, 9, 0) & - & - & - & 58~dB & 460 \\ | |
3 & (3, 3, 15) & (27, 9, 0) & (5, 3, 0) & - & - & 66~dB & 488 \\ | 468 | 481 | 3 & (3, 3, 15) & (27, 9, 0) & (5, 3, 0) & - & - & 66~dB & 488 \\ | |
4 & (3, 3, 15) & (19, 7, 0) & (11, 5, 0) & (3, 3, 0) & - & 74~dB & 499 \\ | 469 | 482 | 4 & (3, 3, 15) & (19, 7, 0) & (11, 5, 0) & (3, 3, 0) & - & 74~dB & 499 \\ | |
5 & (3, 3, 15) & (23, 8, 0) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & 78~dB & 489 \\ | 470 | 483 | 5 & (3, 3, 15) & (23, 8, 0) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & 78~dB & 489 \\ | |
\hline | 471 | 484 | \hline | |
\end{tabular} | 472 | 485 | \end{tabular} | |
} | 473 | 486 | } | |
\end{table} | 474 | 487 | \end{table} | |
475 | 488 | |||
\begin{table} | 476 | 489 | \begin{table} | |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000} | 477 | 490 | \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000} | |
\label{tbl:gurobi_max_1000} | 478 | 491 | \label{tbl:gurobi_max_1000} | |
\centering | 479 | 492 | \centering | |
{\scalefont{0.77} | 480 | 493 | {\scalefont{0.77} | |
\begin{tabular}{|c|ccccc|c|c|} | 481 | 494 | \begin{tabular}{|c|ccccc|c|c|} | |
\hline | 482 | 495 | \hline | |
$n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | 483 | 496 | $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | |
\hline | 484 | 497 | \hline | |
1 & (37, 11, 0) & - & - & - & - & 56~dB & 999 \\ | 485 | 498 | 1 & (37, 11, 0) & - & - & - & - & 56~dB & 999 \\ | |
2 & (3, 3, 15) & (51, 14, 0) & - & - & - & 87~dB & 975 \\ | 486 | 499 | 2 & (3, 3, 15) & (51, 14, 0) & - & - & - & 87~dB & 975 \\ | |
3 & (3, 3, 15) & (35, 11, 0) & (19, 7, 0) & - & - & 99~dB & 1000 \\ | 487 | 500 | 3 & (3, 3, 15) & (35, 11, 0) & (19, 7, 0) & - & - & 99~dB & 1000 \\ | |
4 & (3, 4, 16) & (27, 8, 0) & (19, 7, 1) & (11, 5, 0) & - & 103~dB & 998 \\ | 488 | 501 | 4 & (3, 4, 16) & (27, 8, 0) & (19, 7, 1) & (11, 5, 0) & - & 103~dB & 998 \\ | |
5 & (3, 3, 15) & (31, 9, 0) & (19, 7, 0) & (3, 3, 1) & (3, 3, 0) & 111~dB & 984 \\ | 489 | 502 | 5 & (3, 3, 15) & (31, 9, 0) & (19, 7, 0) & (3, 3, 1) & (3, 3, 0) & 111~dB & 984 \\ | |
\hline | 490 | 503 | \hline | |
\end{tabular} | 491 | 504 | \end{tabular} | |
} | 492 | 505 | } | |
\end{table} | 493 | 506 | \end{table} | |
494 | 507 | |||
\begin{table} | 495 | 508 | \begin{table} | |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500} | 496 | 509 | \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500} | |
\label{tbl:gurobi_max_1500} | 497 | 510 | \label{tbl:gurobi_max_1500} | |
\centering | 498 | 511 | \centering | |
{\scalefont{0.77} | 499 | 512 | {\scalefont{0.77} | |
\begin{tabular}{|c|ccccc|c|c|} | 500 | 513 | \begin{tabular}{|c|ccccc|c|c|} | |
\hline | 501 | 514 | \hline | |
$n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | 502 | 515 | $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | |
\hline | 503 | 516 | \hline | |
1 & (47, 15, 0) & - & - & - & - & 71~dB & 1457 \\ | 504 | 517 | 1 & (47, 15, 0) & - & - & - & - & 71~dB & 1457 \\ | |
2 & (19, 6, 15) & (51, 14, 0) & - & - & - & 103~dB & 1489 \\ | 505 | 518 | 2 & (19, 6, 15) & (51, 14, 0) & - & - & - & 103~dB & 1489 \\ | |
3 & (3, 3, 15) & (35, 11, 0) & (35, 11, 0) & - & - & 122~dB & 1492 \\ | 506 | 519 | 3 & (3, 3, 15) & (35, 11, 0) & (35, 11, 0) & - & - & 122~dB & 1492 \\ | |
4 & (3, 3, 15) & (27, 8, 0) & (19, 7, 0) & (27, 9, 0) & - & 129~dB & 1498 \\ | 507 | 520 | 4 & (3, 3, 15) & (27, 8, 0) & (19, 7, 0) & (27, 9, 0) & - & 129~dB & 1498 \\ | |
5 & (3, 3, 15) & (23, 9, 2) & (27, 9, 0) & (19, 7, 0) & (3, 3, 0) & 136~dB & 1499 \\ | 508 | 521 | 5 & (3, 3, 15) & (23, 9, 2) & (27, 9, 0) & (19, 7, 0) & (3, 3, 0) & 136~dB & 1499 \\ | |
\hline | 509 | 522 | \hline | |
\end{tabular} | 510 | 523 | \end{tabular} | |
} | 511 | 524 | } | |
\end{table} | 512 | 525 | \end{table} | |
513 | 526 | |||
\renewcommand{\arraystretch}{1} | 514 | 527 | \renewcommand{\arraystretch}{1} | |
515 | 528 | |||
From these tables, we can first state that the more stages are used to define | 516 | 529 | From these tables, we can first state that the more stages are used to define | |
the cascaded FIR filters, the better the rejection. It was an expected result as it has | 517 | 530 | the cascaded FIR filters, the better the rejection. It was an expected result as it has | |
been previously observed that many small filters are better than | 518 | 531 | been previously observed that many small filters are better than | |
a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusion | 519 | 532 | a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusion | |
being hardly used in practice due to the lack of tools for identifying individual filter | 520 | 533 | being hardly used in practice due to the lack of tools for identifying individual filter | |
coefficients in the cascaded approach. | 521 | 534 | coefficients in the cascaded approach. | |
522 | 535 | |||
Second, the larger the silicon area, the better the rejection. This was also an | 523 | 536 | Second, the larger the silicon area, the better the rejection. This was also an | |
expected result as more area means a filter of better quality (more coefficients | 524 | 537 | expected result as more area means a filter of better quality (more coefficients | |
or more bits per coefficient). | 525 | 538 | or more bits per coefficient). | |
526 | 539 | |||
Then, we also observe that the first stage can have a larger shift than the other | 527 | 540 | Then, we also observe that the first stage can have a larger shift than the other | |
stages. This is explained by the fact that the solver tries to use just enough | 528 | 541 | stages. This is explained by the fact that the solver tries to use just enough | |
bits for the computed rejection after each stage. In the first stage, a | 529 | 542 | bits for the computed rejection after each stage. In the first stage, a | |
balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift} | 530 | 543 | balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift} | |
gives the relation between both values. | 531 | 544 | gives the relation between both values. | |
532 | 545 | |||
Finally, we note that the solver consumes all the given silicon area. | 533 | 546 | Finally, we note that the solver consumes all the given silicon area. | |
534 | 547 | |||
The following graphs present the rejection for real data on the FPGA. In all following | 535 | 548 | The following graphs present the rejection for real data on the FPGA. In all following | |
figures, the solid line represents the actual rejection of the filtered | 536 | 549 | figures, the solid line represents the actual rejection of the filtered | |
data on the FPGA as measured experimentally and the dashed line are the noise level | 537 | 550 | data on the FPGA as measured experimentally and the dashed line are the noise level | |
given by the quadratic solver. The configurations are those computed in the previous section. | 538 | 551 | given by the quadratic solver. The configurations are those computed in the previous section. | |
539 | 552 | |||
Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500. | 540 | 553 | Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500. | |
Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000. | 541 | 554 | Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000. | |
Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500. | 542 | 555 | Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500. | |
543 | 556 | |||
\begin{figure} | 544 | 557 | \begin{figure} | |
\centering | 545 | 558 | \centering | |
\includegraphics[width=\linewidth]{images/max_500} | 546 | 559 | \includegraphics[width=\linewidth]{images/max_500} | |
\caption{Signal spectrum for MAX/500} | 547 | 560 | \caption{Signal spectrum for MAX/500} | |
\label{fig:max_500_result} | 548 | 561 | \label{fig:max_500_result} | |
\end{figure} | 549 | 562 | \end{figure} | |
550 | 563 | |||
\begin{figure} | 551 | 564 | \begin{figure} | |
\centering | 552 | 565 | \centering | |
\includegraphics[width=\linewidth]{images/max_1000} | 553 | 566 | \includegraphics[width=\linewidth]{images/max_1000} | |
\caption{Signal spectrum for MAX/1000} | 554 | 567 | \caption{Signal spectrum for MAX/1000} | |
\label{fig:max_1000_result} | 555 | 568 | \label{fig:max_1000_result} | |
\end{figure} | 556 | 569 | \end{figure} | |
557 | 570 | |||
\begin{figure} | 558 | 571 | \begin{figure} | |
\centering | 559 | 572 | \centering | |
\includegraphics[width=\linewidth]{images/max_1500} | 560 | 573 | \includegraphics[width=\linewidth]{images/max_1500} | |
\caption{Signal spectrum for MAX/1500} | 561 | 574 | \caption{Signal spectrum for MAX/1500} | |
\label{fig:max_1500_result} | 562 | 575 | \label{fig:max_1500_result} | |
\end{figure} | 563 | 576 | \end{figure} | |
564 | 577 | |||
In all cases, we observe that the actual rejection is close to the rejection computed by the solver. | 565 | 578 | In all cases, we observe that the actual rejection is close to the rejection computed by the solver. | |
566 | 579 | |||
We compare the actual silicon resources given by Vivado to the | 567 | 580 | We compare the actual silicon resources given by Vivado to the | |
resources in arbitrary units. | 568 | 581 | resources in arbitrary units. | |
The goal is to check that our arbitrary units of silicon area models well enough | 569 | 582 | The goal is to check that our arbitrary units of silicon area models well enough | |
the real resources on the FPGA. Especially we want to verify that, for a given | 570 | 583 | the real resources on the FPGA. Especially we want to verify that, for a given | |
number of arbitrary units, the actual silicon resources do not depend on the | 571 | 584 | number of arbitrary units, the actual silicon resources do not depend on the | |
number of stages $n$. Most significantly, our approach aims | 572 | 585 | number of stages $n$. Most significantly, our approach aims | |
at remaining far enough from the practical logic gate implementation used by | 573 | 586 | at remaining far enough from the practical logic gate implementation used by | |
various vendors to remain platform independent and be portable from one | 574 | 587 | various vendors to remain platform independent and be portable from one | |
architecture to another. | 575 | 588 | architecture to another. | |
576 | 589 | |||
Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and | 577 | 590 | Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and | |
MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000 | 578 | 591 | MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000 | |
and 1500 arbitrary units. We have taken care to extract solely the resources used by | 579 | 592 | and 1500 arbitrary units. We have taken care to extract solely the resources used by | |
the FIR filters and remove additional processing blocks including FIFO and PL to | 580 | 593 | the FIR filters and remove additional processing blocks including FIFO and PL to | |
PS communication. | 581 | 594 | PS communication. | |
582 | 595 | |||
\begin{table} | 583 | 596 | \begin{table} | |
\caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} | 584 | 597 | \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} | |
\label{tbl:resources_usage} | 585 | 598 | \label{tbl:resources_usage} | |
\centering | 586 | 599 | \centering | |
\begin{tabular}{|c|c|ccc|c|} | 587 | 600 | \begin{tabular}{|c|c|ccc|c|} | |
\hline | 588 | 601 | \hline | |
$n$ & & MAX/500 & MAX/1000 & MAX/1500 & \emph{Zynq 7010} \\ \hline\hline | 589 | 602 | $n$ & & MAX/500 & MAX/1000 & MAX/1500 & \emph{Zynq 7010} \\ \hline\hline | |
& LUT & 249 & 453 & 627 & \emph{17600} \\ | 590 | 603 | & LUT & 249 & 453 & 627 & \emph{17600} \\ | |
1 & BRAM & 1 & 1 & 1 & \emph{120} \\ | 591 | 604 | 1 & BRAM & 1 & 1 & 1 & \emph{120} \\ | |
& DSP & 21 & 37 & 47 & \emph{80} \\ \hline | 592 | 605 | & DSP & 21 & 37 & 47 & \emph{80} \\ \hline | |
& LUT & 2374 & 5494 & 691 & \emph{17600} \\ | 593 | 606 | & LUT & 2374 & 5494 & 691 & \emph{17600} \\ | |
2 & BRAM & 2 & 2 & 2 & \emph{120} \\ | 594 | 607 | 2 & BRAM & 2 & 2 & 2 & \emph{120} \\ | |
& DSP & 0 & 0 & 70 & \emph{80} \\ \hline | 595 | 608 | & DSP & 0 & 0 & 70 & \emph{80} \\ \hline | |
& LUT & 2443 & 3304 & 3521 & \emph{17600} \\ | 596 | 609 | & LUT & 2443 & 3304 & 3521 & \emph{17600} \\ | |
3 & BRAM & 3 & 3 & 3 & \emph{120} \\ | 597 | 610 | 3 & BRAM & 3 & 3 & 3 & \emph{120} \\ | |
& DSP & 0 & 19 & 35 & \emph{80} \\ \hline | 598 | 611 | & DSP & 0 & 19 & 35 & \emph{80} \\ \hline | |
& LUT & 2634 & 3753 & 2557 & \emph{17600} \\ | 599 | 612 | & LUT & 2634 & 3753 & 2557 & \emph{17600} \\ | |
4 & BRAM & 4 & 4 & 4 & \emph{120} \\ | 600 | 613 | 4 & BRAM & 4 & 4 & 4 & \emph{120} \\ | |
& DPS & 0 & 19 & 46 & \emph{80} \\ \hline | 601 | 614 | & DPS & 0 & 19 & 46 & \emph{80} \\ \hline | |
& LUT & 2423 & 3047 & 2847 & \emph{17600} \\ | 602 | 615 | & LUT & 2423 & 3047 & 2847 & \emph{17600} \\ | |
5 & BRAM & 5 & 5 & 5 & \emph{120} \\ | 603 | 616 | 5 & BRAM & 5 & 5 & 5 & \emph{120} \\ | |
& DPS & 0 & 22 & 46 & \emph{80} \\ \hline | 604 | 617 | & DPS & 0 & 22 & 46 & \emph{80} \\ \hline | |
\end{tabular} | 605 | 618 | \end{tabular} | |
\end{table} | 606 | 619 | \end{table} | |
607 | 620 | |||
In some cases, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that, | 608 | 621 | In some cases, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that, | |
when the filters coefficients are small enough, or when the input size is small | 609 | 622 | when the filters coefficients are small enough, or when the input size is small | |
enough, Vivado optimized resource consumption by selecting multiplexers to | 610 | 623 | enough, Vivado optimized resource consumption by selecting multiplexers to | |
implement the multiplications instead of a DSP. In this case, it is quite difficult | 611 | 624 | implement the multiplications instead of a DSP. In this case, it is quite difficult | |
to compare the whole silicon budget. | 612 | 625 | to compare the whole silicon budget. | |
613 | 626 | |||
However, a rough estimation can be made with a simple equivalence. Looking at | 614 | 627 | However, a rough estimation can be made with a simple equivalence. Looking at | |
the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$, | 615 | 628 | the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$, | |
we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon | 616 | 629 | we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon | |
area use. With this equivalence, our 500 arbitraty units corresponds to 2500 LUTs, | 617 | 630 | area use. With this equivalence, our 500 arbitraty units corresponds to 2500 LUTs, | |
1000 arbitrary units corresponds to 5000 LUTs and 1500 arbitrary units corresponds | 618 | 631 | 1000 arbitrary units corresponds to 5000 LUTs and 1500 arbitrary units corresponds | |
to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary | 619 | 632 | to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary | |
unit are quite good. The relatively small differences can probably be explained | 620 | 633 | unit are quite good. The relatively small differences can probably be explained | |
by the optimizations done by Vivado based on the detailed map of available processing resources. | 621 | 634 | by the optimizations done by Vivado based on the detailed map of available processing resources. | |
622 | 635 | |||
We present the computation time to solve the quadratic problem. | 623 | 636 | We present the computation time to solve the quadratic problem. | |
For each case, the filter solver software are executed with a Intel(R) Xeon(R) CPU E5606 | 624 | 637 | For each case, the filter solver software are executed with a Intel(R) Xeon(R) CPU E5606 | |
cadenced at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve | 625 | 638 | cadenced at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve | |
the quadratic problem. | 626 | 639 | the quadratic problem. | |
627 | 640 | |||
Table~\ref{tbl:area_time} shows the time needed to solve the quadratic | 628 | 641 | Table~\ref{tbl:area_time} shows the time needed to solve the quadratic | |
problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units. | 629 | 642 | problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units. | |
630 | 643 | |||
\begin{table} | 631 | 644 | \begin{table} | |
\caption{Time to solve the quadratic program with Gurobi} | 632 | 645 | \caption{Time to solve the quadratic program with Gurobi} | |
\label{tbl:area_time} | 633 | 646 | \label{tbl:area_time} | |
\centering | 634 | 647 | \centering | |
\begin{tabular}{|c|c|c|c|}\hline | 635 | 648 | \begin{tabular}{|c|c|c|c|}\hline | |
$n$ & Time (MAX/500) & Time (MAX/1000) & Time (MAX/1500) \\\hline\hline | 636 | 649 | $n$ & Time (MAX/500) & Time (MAX/1000) & Time (MAX/1500) \\\hline\hline | |
1 & 0.1~s & 0.1~s & 0.3~s \\ | 637 | 650 | 1 & 0.1~s & 0.1~s & 0.3~s \\ | |
2 & 1.1~s & 2.2~s & 12~s \\ | 638 | 651 | 2 & 1.1~s & 2.2~s & 12~s \\ | |
3 & 17~s & 137~s ($\approx$ 2~min) & 275~s ($\approx$ 4~min) \\ | 639 | 652 | 3 & 17~s & 137~s ($\approx$ 2~min) & 275~s ($\approx$ 4~min) \\ | |
4 & 52~s & 5448~s ($\approx$ 90~min) & 5505~s ($\approx$ 17~h) \\ | 640 | 653 | 4 & 52~s & 5448~s ($\approx$ 90~min) & 5505~s ($\approx$ 17~h) \\ | |
5 & 286~s ($\approx$ 4~min) & 4119~s ($\approx$ 68~min) & 235479~s ($\approx$ 3~days) \\\hline | 641 | 654 | 5 & 286~s ($\approx$ 4~min) & 4119~s ($\approx$ 68~min) & 235479~s ($\approx$ 3~days) \\\hline | |
\end{tabular} | 642 | 655 | \end{tabular} | |
\end{table} | 643 | 656 | \end{table} | |
644 | 657 | |||
As expected, the computation time seems to rise exponentially with the number of stages. % TODO: exponentiel ? | 645 | 658 | As expected, the computation time seems to rise exponentially with the number of stages. % TODO: exponentiel ? | |
When the area is limited, the design exploration space is more limited and the solver is able to | 646 | 659 | When the area is limited, the design exploration space is more limited and the solver is able to | |
find an optimal solution faster. On the contrary, in the case of MAX/1500 with | 647 | 660 | find an optimal solution faster. On the contrary, in the case of MAX/1500 with | |
5~stages, we were not able to obtain a result after 40~hours of computation so we decided to stop. | 648 | 661 | 5~stages, we were not able to obtain a result after 40~hours of computation so we decided to stop. | |
649 | 662 | |||
\section{Experiments with fixed rejection target} | 650 | 663 | \section{Experiments with fixed rejection target} | |
\label{sec:fixed_rej} | 651 | 664 | \label{sec:fixed_rej} | |
This section presents the results of complementary quadratic program which we | 652 | 665 | This section presents the results of complementary quadratic program which we | |
minimize the area occupation for a targeted noise level. | 653 | 666 | minimize the area occupation for a targeted noise level. | |
654 | 667 | |||
The experimental setup is also composed of three cases. The raw input is the same | 655 | 668 | The experimental setup is also composed of three cases. The raw input is the same | |
as previous section, a PRN generator, which fixes the input data size $\Pi^I$. | 656 | 669 | as previous section, a PRN generator, which fixes the input data size $\Pi^I$. | |
Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60 or 80~dB. | 657 | 670 | Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60 or 80~dB. | |
Hence, the three cases have been named: MIN/40, MIN/60, MIN/80. | 658 | 671 | Hence, the three cases have been named: MIN/40, MIN/60, MIN/80. | |
The number of configurations $p$ is the same as previous section. | 659 | 672 | The number of configurations $p$ is the same as previous section. | |
660 | 673 | |||
Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40. | 661 | 674 | Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40. | |
Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60. | 662 | 675 | Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60. | |
Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80. | 663 | 676 | Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80. | |
664 | 677 | |||
\renewcommand{\arraystretch}{1.4} | 665 | 678 | \renewcommand{\arraystretch}{1.4} | |
666 | 679 | |||
\begin{table} | 667 | 680 | \begin{table} | |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40} | 668 | 681 | \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40} | |
\label{tbl:gurobi_min_40} | 669 | 682 | \label{tbl:gurobi_min_40} | |
\centering | 670 | 683 | \centering | |
{\scalefont{0.77} | 671 | 684 | {\scalefont{0.77} | |
\begin{tabular}{|c|ccccc|c|c|} | 672 | 685 | \begin{tabular}{|c|ccccc|c|c|} | |
\hline | 673 | 686 | \hline | |
$n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | 674 | 687 | $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | |
\hline | 675 | 688 | \hline | |
1 & (27, 8, 0) & - & - & - & - & 41~dB & 648 \\ | 676 | 689 | 1 & (27, 8, 0) & - & - & - & - & 41~dB & 648 \\ | |
2 & (3, 2, 14) & (19, 7, 0) & - & - & - & 40~dB & 263 \\ | 677 | 690 | 2 & (3, 2, 14) & (19, 7, 0) & - & - & - & 40~dB & 263 \\ | |
3 & (3, 3, 15) & (11, 5, 0) & (3, 3, 0) & - & - & 41~dB & 192 \\ | 678 | 691 | 3 & (3, 3, 15) & (11, 5, 0) & (3, 3, 0) & - & - & 41~dB & 192 \\ | |
4 & (3, 3, 15) & (3, 3, 0) & (3, 3, 0) & (3, 3, 0) & - & 42~dB & 147 \\ | 679 | 692 | 4 & (3, 3, 15) & (3, 3, 0) & (3, 3, 0) & (3, 3, 0) & - & 42~dB & 147 \\ | |
\hline | 680 | 693 | \hline | |
\end{tabular} | 681 | 694 | \end{tabular} | |
} | 682 | 695 | } | |
\end{table} | 683 | 696 | \end{table} | |
684 | 697 | |||
\begin{table} | 685 | 698 | \begin{table} | |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60} | 686 | 699 | \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60} | |
\label{tbl:gurobi_min_60} | 687 | 700 | \label{tbl:gurobi_min_60} | |
\centering | 688 | 701 | \centering | |
{\scalefont{0.77} | 689 | 702 | {\scalefont{0.77} | |
\begin{tabular}{|c|ccccc|c|c|} | 690 | 703 | \begin{tabular}{|c|ccccc|c|c|} | |
\hline | 691 | 704 | \hline | |
$n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | 692 | 705 | $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | |
\hline | 693 | 706 | \hline | |
1 & (39, 13, 0) & - & - & - & - & 60~dB & 1131 \\ | 694 | 707 | 1 & (39, 13, 0) & - & - & - & - & 60~dB & 1131 \\ | |
2 & (3, 3, 15) & (35, 10, 0) & - & - & - & 60~dB & 547 \\ | 695 | 708 | 2 & (3, 3, 15) & (35, 10, 0) & - & - & - & 60~dB & 547 \\ | |
3 & (3, 3, 15) & (27, 8, 0) & (3, 3, 0) & - & - & 62~dB & 426 \\ | 696 | 709 | 3 & (3, 3, 15) & (27, 8, 0) & (3, 3, 0) & - & - & 62~dB & 426 \\ | |
4 & (3, 2, 14) & (11, 5, 1) & (11, 5, 0) & (3, 3, 0) & - & 60~dB & 344 \\ | 697 | 710 | 4 & (3, 2, 14) & (11, 5, 1) & (11, 5, 0) & (3, 3, 0) & - & 60~dB & 344 \\ | |
5 & (3, 2, 14) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & (3, 3, 0) & 60~dB & 279 \\ | 698 | 711 | 5 & (3, 2, 14) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & (3, 3, 0) & 60~dB & 279 \\ | |
\hline | 699 | 712 | \hline | |
\end{tabular} | 700 | 713 | \end{tabular} | |
} | 701 | 714 | } | |
\end{table} | 702 | 715 | \end{table} | |
703 | 716 | |||
\begin{table} | 704 | 717 | \begin{table} | |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80} | 705 | 718 | \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80} | |
\label{tbl:gurobi_min_80} | 706 | 719 | \label{tbl:gurobi_min_80} | |
\centering | 707 | 720 | \centering | |
{\scalefont{0.77} | 708 | 721 | {\scalefont{0.77} | |
\begin{tabular}{|c|ccccc|c|c|} | 709 | 722 | \begin{tabular}{|c|ccccc|c|c|} | |
\hline | 710 | 723 | \hline | |
$n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | 711 | 724 | $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ | |
\hline | 712 | 725 | \hline | |
1 & (55, 16, 0) & - & - & - & - & 81~dB & 1760 \\ | 713 | 726 | 1 & (55, 16, 0) & - & - & - & - & 81~dB & 1760 \\ | |
2 & (3, 3, 15) & (47, 14, 0) & - & - & - & 80~dB & 903 \\ | 714 | 727 | 2 & (3, 3, 15) & (47, 14, 0) & - & - & - & 80~dB & 903 \\ | |
3 & (3, 3, 15) & (23, 9, 0) & (19, 7, 0) & - & - & 80~dB & 698 \\ | 715 | 728 | 3 & (3, 3, 15) & (23, 9, 0) & (19, 7, 0) & - & - & 80~dB & 698 \\ | |
4 & (3, 3, 15) & (27, 9, 0) & (7, 7, 4) & (3, 3, 0) & - & 80~dB & 605 \\ | 716 | 729 | 4 & (3, 3, 15) & (27, 9, 0) & (7, 7, 4) & (3, 3, 0) & - & 80~dB & 605 \\ | |
5 & (3, 2, 14) & (27, 8, 0) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & 81~dB & 534 \\ | 717 | 730 | 5 & (3, 2, 14) & (27, 8, 0) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & 81~dB & 534 \\ | |
\hline | 718 | 731 | \hline | |
\end{tabular} | 719 | 732 | \end{tabular} | |
} | 720 | 733 | } | |
\end{table} | 721 | 734 | \end{table} | |
\renewcommand{\arraystretch}{1} | 722 | 735 | \renewcommand{\arraystretch}{1} | |
723 | 736 | |||
From these tables, we can first state that all configuration reach the target rejection | 724 | 737 | From these tables, we can first state that all configuration reach the target rejection | |
level and more we have stages lesser is the area occupied in arbitrary unit. | 725 | 738 | level and more we have stages lesser is the area occupied in arbitrary unit. | |
Futhermore, the area of the monolithic filter is twice bigger than the two cascaded. | 726 | 739 | Futhermore, the area of the monolithic filter is twice bigger than the two cascaded. | |
More generally, more there is filters lower is the occupied area. | 727 | 740 | More generally, more there is filters lower is the occupied area. | |
728 | 741 | |||
Like in previous section, the solver choose always a little filter as first | 729 | 742 | Like in previous section, the solver choose always a little filter as first | |
filter stage and the second one is often the biggest filter. this choice can be explain | 730 | 743 | filter stage and the second one is often the biggest filter. this choice can be explain | |
as the previous section. The solver uses just enough bits to not degrade the input | 731 | 744 | as the previous section. The solver uses just enough bits to not degrade the input | |
signal and in second filter it can choose a better filter to improve rejection without | 732 | 745 | signal and in second filter it can choose a better filter to improve rejection without | |
have too bits in the output data. | 733 | 746 | have too bits in the output data. | |
734 | 747 | |||
For the specific case in MIN/40 for $n = 5$ the solver has determined that the optimal | 735 | 748 | For the specific case in MIN/40 for $n = 5$ the solver has determined that the optimal | |
number of filter is 4 so it not chose any configuration in last filter. Hence this | 736 | 749 | number of filter is 4 so it not chose any configuration in last filter. Hence this | |
solution is equivalent to the result for $n = 4$. | 737 | 750 | solution is equivalent to the result for $n = 4$. | |
738 | 751 | |||
The following graphs present the rejection for real data on the FPGA. In all following | 739 | 752 | The following graphs present the rejection for real data on the FPGA. In all following | |
figures, the solid line represents the actual rejection of the filtered | 740 | 753 | figures, the solid line represents the actual rejection of the filtered | |
data on the FPGA as measured experimentally and the dashed line are the noise level | 741 | 754 | data on the FPGA as measured experimentally and the dashed line are the noise level | |
given by the quadratic solver. | 742 | 755 | given by the quadratic solver. | |
743 | 756 | |||
Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40. | 744 | 757 | Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40. | |
Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60. | 745 | 758 | Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60. | |
Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80. | 746 | 759 | Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80. | |
747 | 760 | |||
\begin{figure} | 748 | 761 | \begin{figure} | |
\centering | 749 | 762 | \centering |