Commit a5c9e7b9422523032c79c324e28452311fd46215
1 parent
c9c460c6b3
Exists in
master
Rajout de la pyramide de rejection.
Showing 2 changed files with 20 additions and 7 deletions Side-by-side Diff
ifcs2018_journal.tex
1 | -% fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee | |
2 | -% demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de | |
1 | +% fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee | |
2 | +% demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de | |
3 | 3 | % rejection par bit et perte si moins de bits que rejection/6 |
4 | 4 | % developper programme lineaire en incluant le decalage de bits |
5 | -% insister que avant on etait synthetisable mais pas implementable, alors que maintenant on | |
6 | -% implemente et on demontre que ca tourne | |
5 | +% insister que avant on etait synthetisable mais pas implementable, alors que maintenant on | |
6 | +% implemente et on demontre que ca tourne | |
7 | 7 | % gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ? |
8 | 8 | % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer |
9 | 9 | % (zedboard ou redpit) |
... | ... | @@ -169,7 +169,6 @@ |
169 | 169 | thanks at generator of Pseudo-Random Number (PRN) or thanks at an Analog to Digital |
170 | 170 | Converter (ADC). Once we have a digital signal, we filter it to decrease the noise level. |
171 | 171 | Finally we stored some burst of filtered samples before post-processing it. |
172 | -% TODO: faire un schéma | |
173 | 172 | In this particular case, we want optimize the filtering step to have the best noise |
174 | 173 | rejection for constrain number of resource or to have the minimal resources |
175 | 174 | consumption for a given rejection objective. |
... | ... | @@ -250,8 +249,6 @@ |
250 | 249 | \draw[dashed] (12,8) -- (16,8) ; |
251 | 250 | |
252 | 251 | \end{tikzpicture} |
253 | - | |
254 | -% \includegraphics[width=.5\linewidth]{images/fir_magnitude} | |
255 | 252 | \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$: |
256 | 253 | the passband is considered to occupy the initial 40\% of the Nyquist frequency range, |
257 | 254 | the stopband the last 40\%, allowing 20\% transition width.} |
... | ... | @@ -274,6 +271,22 @@ |
274 | 271 | \includegraphics[width=\linewidth]{images/colored_custom_criterion} |
275 | 272 | \caption{Custom criterion comparison between monolithic filter and cascade filters} |
276 | 273 | \label{fig:custom_criterion} |
274 | +\end{figure} | |
275 | + | |
276 | +Thanks to this criterion we are able to automatically generate lot of fir coefficients | |
277 | +and estimate their rejection. The figure~\ref{fig:rejection_pyramid} exhibits the | |
278 | +rejection in function of the number of coefficients and their number of bits. | |
279 | +We can observe it looks like a pyramid so the edge represents the best | |
280 | +coefficient set. Indeed if we choose a number of coefficients, increasing the number | |
281 | +of bits over the edge will not improve the rejection. Conversely when we choose | |
282 | +a number of bits, too much increase the number of coefficients will not improve | |
283 | +the rejection. Hence the best coefficient set are on the edge of pyramid. | |
284 | + | |
285 | +\begin{figure} | |
286 | +\centering | |
287 | +\includegraphics[width=\linewidth]{images/rejection_pyramid} | |
288 | +\caption{Rejection as a function of number of coefficients and number of bits} | |
289 | +\label{fig:rejection_pyramid} | |
277 | 290 | \end{figure} |
278 | 291 | |
279 | 292 | Although we have a efficient criterion to estimate the rejection of one set of coefficient |
images/rejection_pyramid.pdf
No preview for this file type