Commit a5c9e7b9422523032c79c324e28452311fd46215

Authored by Arthur HUGEAT
1 parent c9c460c6b3
Exists in master

Rajout de la pyramide de rejection.

Showing 2 changed files with 20 additions and 7 deletions Side-by-side Diff

ifcs2018_journal.tex
1   -% fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee
2   -% demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de
  1 +% fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee
  2 +% demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de
3 3 % rejection par bit et perte si moins de bits que rejection/6
4 4 % developper programme lineaire en incluant le decalage de bits
5   -% insister que avant on etait synthetisable mais pas implementable, alors que maintenant on
6   -% implemente et on demontre que ca tourne
  5 +% insister que avant on etait synthetisable mais pas implementable, alors que maintenant on
  6 +% implemente et on demontre que ca tourne
7 7 % gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ?
8 8 % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer
9 9 % (zedboard ou redpit)
... ... @@ -169,7 +169,6 @@
169 169 thanks at generator of Pseudo-Random Number (PRN) or thanks at an Analog to Digital
170 170 Converter (ADC). Once we have a digital signal, we filter it to decrease the noise level.
171 171 Finally we stored some burst of filtered samples before post-processing it.
172   -% TODO: faire un schéma
173 172 In this particular case, we want optimize the filtering step to have the best noise
174 173 rejection for constrain number of resource or to have the minimal resources
175 174 consumption for a given rejection objective.
... ... @@ -250,8 +249,6 @@
250 249 \draw[dashed] (12,8) -- (16,8) ;
251 250  
252 251 \end{tikzpicture}
253   -
254   -% \includegraphics[width=.5\linewidth]{images/fir_magnitude}
255 252 \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$:
256 253 the passband is considered to occupy the initial 40\% of the Nyquist frequency range,
257 254 the stopband the last 40\%, allowing 20\% transition width.}
... ... @@ -274,6 +271,22 @@
274 271 \includegraphics[width=\linewidth]{images/colored_custom_criterion}
275 272 \caption{Custom criterion comparison between monolithic filter and cascade filters}
276 273 \label{fig:custom_criterion}
  274 +\end{figure}
  275 +
  276 +Thanks to this criterion we are able to automatically generate lot of fir coefficients
  277 +and estimate their rejection. The figure~\ref{fig:rejection_pyramid} exhibits the
  278 +rejection in function of the number of coefficients and their number of bits.
  279 +We can observe it looks like a pyramid so the edge represents the best
  280 +coefficient set. Indeed if we choose a number of coefficients, increasing the number
  281 +of bits over the edge will not improve the rejection. Conversely when we choose
  282 +a number of bits, too much increase the number of coefficients will not improve
  283 +the rejection. Hence the best coefficient set are on the edge of pyramid.
  284 +
  285 +\begin{figure}
  286 +\centering
  287 +\includegraphics[width=\linewidth]{images/rejection_pyramid}
  288 +\caption{Rejection as a function of number of coefficients and number of bits}
  289 +\label{fig:rejection_pyramid}
277 290 \end{figure}
278 291  
279 292 Although we have a efficient criterion to estimate the rejection of one set of coefficient
images/rejection_pyramid.pdf
No preview for this file type