diff --git a/ifcs2018_proceeding.tex b/ifcs2018_proceeding.tex index deb6bb6..76431c6 100644 --- a/ifcs2018_proceeding.tex +++ b/ifcs2018_proceeding.tex @@ -248,8 +248,8 @@ shaped rejection capability function. Linear program formalism for solving the problem is well documented: an objective function is defined which is linearly dependent on the parameters to be optimized. Constraints are expressed -as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}. -With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this: +as linear equations and solved using one of the available solvers, in our case GLPK\cite{glpk}. +With the notations used in the description of system \ref{model-FIR}, we have defined the linear problem as: \paragraph{Variables} \begin{align*} x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\