Commit 33bcbbbcd854afd612381e6423a54a2548061470

Authored by jfriedt
1 parent e3580faaed
Exists in master

biblio en majuscules et description moyenne/median

Showing 3 changed files with 66 additions and 22 deletions Inline Diff

@thesis{gwen-cogen, 1 1 @thesis{gwen-cogen,
author = {Gwenhaël Goavec-Merou}, 2 2 author = {Gwenhaël Goavec-Merou},
title = {Générateur de coprocesseur pour le traitement de données en flux (vidéo ou similaire) sur FPGA}, 3 3 title = {Générateur de coprocesseur pour le traitement de données en flux (vidéo ou similaire) sur {FPGA}},
institution = {FEMTO-ST}, 4 4 institution = {FEMTO-ST},
year = {2014} 5 5 year = {2014}
} 6 6 }
7 7
@article{hide, 8 8 @article{hide,
title={HIDE: A hardware intelligent description environment}, 9 9 title={HIDE: A hardware intelligent description environment},
author={Benkrid, Khaled and Belkacemi, S and Benkrid, Abdsamad}, 10 10 author={Benkrid, Khaled and Belkacemi, S and Benkrid, Abdsamad},
journal={Microprocessors and Microsystems}, 11 11 journal={Microprocessors and Microsystems},
volume={30}, 12 12 volume={30},
number={6}, 13 13 number={6},
pages={283--300}, 14 14 pages={283--300},
year={2006}, 15 15 year={2006},
publisher={Elsevier} 16 16 publisher={Elsevier}
} 17 17 }
18 18
@inproceedings{skeleton, 19 19 @inproceedings{skeleton,
title={High level programming for FPGA based image and video processing using hardware skeletons}, 20 20 title={High level programming for {FPGA} based image and video processing using hardware skeletons},
author={Benkrid, Khaled and Crookes, Danny and Smith, J and Benkrid, Abdsamad}, 21 21 author={Benkrid, Khaled and Crookes, Danny and Smith, J and Benkrid, Abdsamad},
booktitle={Field-Programmable Custom Computing Machines, 2001. FCCM'01. The 9th Annual IEEE Symposium on}, 22 22 booktitle={Field-Programmable Custom Computing Machines, 2001. FCCM'01. The 9th Annual IEEE Symposium on},
pages={219--226}, 23 23 pages={219--226},
year={2001}, 24 24 year={2001},
organization={IEEE} 25 25 organization={IEEE}
} 26 26 }
27 27
@article{benkrid2004application, 28 28 @article{benkrid2004application,
title={From application descriptions to hardware in seconds: a logic-based approach to bridging the gap}, 29 29 title={From application descriptions to hardware in seconds: a logic-based approach to bridging the gap},
author={Benkrid, Khaled and Crookes, Danny}, 30 30 author={Benkrid, Khaled and Crookes, Danny},
journal={Very Large Scale Integration (VLSI) Systems, IEEE Transactions on}, 31 31 journal={Very Large Scale Integration (VLSI) Systems, IEEE Transactions on},
volume={12}, 32 32 volume={12},
number={4}, 33 33 number={4},
pages={420--436}, 34 34 pages={420--436},
year={2004}, 35 35 year={2004},
publisher={IEEE} 36 36 publisher={IEEE}
} 37 37 }
38 38
@phdthesis{these-dsp-fpga, 39 39 @phdthesis{these-dsp-fpga,
title={Design methodologies and architectures for digital signal processing on FPGAs}, 40 40 title={Design methodologies and architectures for digital signal processing on {FPGA}s},
author={Mirzaei, Shahnam}, 41 41 author={Mirzaei, Shahnam},
year={2010}, 42 42 year={2010},
school={UNIVERSITY OF CALIFORNIA SANTA BARBARA} 43 43 school={UNIVERSITY OF CALIFORNIA SANTA BARBARA}
} 44 44 }
45 45
@article{def1-ordo, 46 46 @article{def1-ordo,
title={Algorithmique Parallèle-Cours Et Exercices Corrigés}, 47 47 title={Algorithmique Parallèle-Cours Et Exercices Corrigés},
author={Legrand, Arnaud and Robert, Yves}, 48 48 author={Legrand, Arnaud and Robert, Yves},
year={2003}, 49 49 year={2003},
publisher={Dunod} 50 50 publisher={Dunod}
} 51 51 }
52 52
@article{these-mathias, 53 53 @article{these-mathias,
title={Optimisation du débit pour des applications linéaires multi-tâches sur plateformes distribuées incluant des temps de reconfiguration}, 54 54 title={Optimisation du débit pour des applications linéaires multi-tâches sur plateformes distribuées incluant des temps de reconfiguration},
author={Coqblin, Mathias}, 55 55 author={Coqblin, Mathias},
institution = {FEMTO-ST}, 56 56 institution = {FEMTO-ST},
year={2012} 57 57 year={2012}
} 58 58 }
59 59
@thesis{these-alex, 60 60 @thesis{these-alex,
author = {Alexandru Dobrila}, 61 61 author = {Alexandru Dobrila},
title = {Optimisation du débit en environnement distribué incertain}, 62 62 title = {Optimisation du débit en environnement distribué incertain},
institution = {FEMTO-ST}, 63 63 institution = {FEMTO-ST},
year = {2011} 64 64 year = {2011}
} 65 65 }
66 66
@book{def2-ordo, 67 67 @book{def2-ordo,
title={Handbook of scheduling: algorithms, models, and performance analysis}, 68 68 title={Handbook of scheduling: algorithms, models, and performance analysis},
author={Leung, Joseph YT}, 69 69 author={Leung, Joseph YT},
year={2004}, 70 70 year={2004},
publisher={CRC Press} 71 71 publisher={CRC Press}
} 72 72 }
73 73
@inproceedings{def-ordo-en-ligne, 74 74 @inproceedings{def-ordo-en-ligne,
title={On the Definition of "On-Line" in Job Scheduling Problems}, 75 75 title={On the Definition of "On-Line" in Job Scheduling Problems},
author={Feitelson, Dror G and Mu'alem, Ahuva W}, 76 76 author={Feitelson, Dror G and Mu'alem, Ahuva W},
booktitle={SIGACT NEWS}, 77 77 booktitle={SIGACT NEWS},
year={2000}, 78 78 year={2000},
organization={Citeseer} 79 79 organization={Citeseer}
} 80 80 }
81 81
@article{shmueli2005backfilling, 82 82 @article{shmueli2005backfilling,
title={Backfilling with lookahead to optimize the packing of parallel jobs}, 83 83 title={Backfilling with lookahead to optimize the packing of parallel jobs},
author={Shmueli, Edi and Feitelson, Dror G}, 84 84 author={Shmueli, Edi and Feitelson, Dror G},
journal={Journal of Parallel and Distributed Computing}, 85 85 journal={Journal of Parallel and Distributed Computing},
volume={65}, 86 86 volume={65},
number={9}, 87 87 number={9},
pages={1090--1107}, 88 88 pages={1090--1107},
year={2005}, 89 89 year={2005},
publisher={Elsevier} 90 90 publisher={Elsevier}
} 91 91 }
92 92
@article{graham1979optimization, 93 93 @article{graham1979optimization,
title={Optimization and approximation in deterministic sequencing and scheduling: a survey}, 94 94 title={Optimization and approximation in deterministic sequencing and scheduling: a survey},
author={Graham, Ronald L and Lawler, Eugene L and Lenstra, Jan Karel and Kan, AHG Rinnooy}, 95 95 author={Graham, Ronald L and Lawler, Eugene L and Lenstra, Jan Karel and Kan, AHG Rinnooy},
journal={Annals of discrete mathematics}, 96 96 journal={Annals of discrete mathematics},
volume={5}, 97 97 volume={5},
pages={287--326}, 98 98 pages={287--326},
year={1979}, 99 99 year={1979},
publisher={Elsevier} 100 100 publisher={Elsevier}
} 101 101 }
102 102
@article{salvador2012accelerating, 103 103 @article{salvador2012accelerating,
title={Accelerating FPGA-based evolution of wavelet transform filters by optimized task scheduling}, 104 104 title={Accelerating {FPGA}-based evolution of wavelet transform filters by optimized task scheduling},
author={Salvador, Ruben and Vidal, Alberto and Moreno, Felix and Riesgo, Teresa and Sekanina, Lukas}, 105 105 author={Salvador, Ruben and Vidal, Alberto and Moreno, Felix and Riesgo, Teresa and Sekanina, Lukas},
journal={Microprocessors and Microsystems}, 106 106 journal={Microprocessors and Microsystems},
volume={36}, 107 107 volume={36},
number={5}, 108 108 number={5},
pages={427--438}, 109 109 pages={427--438},
year={2012}, 110 110 year={2012},
publisher={Elsevier} 111 111 publisher={Elsevier}
} 112 112 }
113 113
@article{zhuo2007scalable, 114 114 @article{zhuo2007scalable,
title={Scalable and modular algorithms for floating-point matrix multiplication on reconfigurable computing systems}, 115 115 title={Scalable and modular algorithms for floating-point matrix multiplication on reconfigurable computing systems},
author={Zhuo, Ling and Prasanna, Viktor K}, 116 116 author={Zhuo, Ling and Prasanna, Viktor K},
journal={Parallel and Distributed Systems, IEEE Transactions on}, 117 117 journal={Parallel and Distributed Systems, IEEE Transactions on},
volume={18}, 118 118 volume={18},
number={4}, 119 119 number={4},
pages={433--448}, 120 120 pages={433--448},
year={2007}, 121 121 year={2007},
publisher={IEEE} 122 122 publisher={IEEE}
} 123 123 }
124 124
@article{olariu1993computing, 125 125 @article{olariu1993computing,
title={Computing the Hough transform on reconfigurable meshes}, 126 126 title={Computing the Hough transform on reconfigurable meshes},
author={Olariu, Stephan and Schwing, James L and Zhang, Jingyuan}, 127 127 author={Olariu, Stephan and Schwing, James L and Zhang, Jingyuan},
journal={Image and vision computing}, 128 128 journal={Image and vision computing},
volume={11}, 129 129 volume={11},
number={10}, 130 130 number={10},
pages={623--628}, 131 131 pages={623--628},
year={1993}, 132 132 year={1993},
publisher={Elsevier} 133 133 publisher={Elsevier}
} 134 134 }
135 135
@article{pan1999improved, 136 136 @article{pan1999improved,
title={An improved constant-time algorithm for computing the Radon and Hough transforms on a reconfigurable mesh}, 137 137 title={An improved constant-time algorithm for computing the Radon and Hough transforms on a reconfigurable mesh},
author={Pan, Yi and Li, Keqin and Hamdi, Mounir}, 138 138 author={Pan, Yi and Li, Keqin and Hamdi, Mounir},
journal={Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on}, 139 139 journal={Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on},
volume={29}, 140 140 volume={29},
number={4}, 141 141 number={4},
pages={417--421}, 142 142 pages={417--421},
year={1999}, 143 143 year={1999},
publisher={IEEE} 144 144 publisher={IEEE}
} 145 145 }
146 146
@article{kasbah2008multigrid, 147 147 @article{kasbah2008multigrid,
title={Multigrid solvers in reconfigurable hardware}, 148 148 title={Multigrid solvers in reconfigurable hardware},
author={Kasbah, Safaa J and Damaj, Issam W and Haraty, Ramzi A}, 149 149 author={Kasbah, Safaa J and Damaj, Issam W and Haraty, Ramzi A},
journal={Journal of Computational and Applied Mathematics}, 150 150 journal={Journal of Computational and Applied Mathematics},
volume={213}, 151 151 volume={213},
number={1}, 152 152 number={1},
pages={79--94}, 153 153 pages={79--94},
year={2008}, 154 154 year={2008},
publisher={Elsevier} 155 155 publisher={Elsevier}
} 156 156 }
157 157
@inproceedings{crookes1998environment, 158 158 @inproceedings{crookes1998environment,
title={An environment for generating FPGA architectures for image algebra-based algorithms}, 159 159 title={An environment for generating {FPGA} architectures for image algebra-based algorithms},
author={Crookes, Danny and Alotaibi, Khalid and Bouridane, Ahmed and Donachy, Paul and Benkrid, Abdsamad}, 160 160 author={Crookes, Danny and Alotaibi, Khalid and Bouridane, Ahmed and Donachy, Paul and Benkrid, Abdsamad},
booktitle={Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on}, 161 161 booktitle={Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on},
pages={990--994}, 162 162 pages={990--994},
year={1998}, 163 163 year={1998},
organization={IEEE} 164 164 organization={IEEE}
} 165 165 }
166 166
@article{crookes2000design, 167 167 @article{crookes2000design,
title={Design and implementation of a high level programming environment for FPGA-based image processing}, 168 168 title={Design and implementation of a high level programming environment for {FPGA}-based image processing},
author={Crookes, D and Benkrid, K and Bouridane, A and Alotaibi, K and Benkrid, A}, 169 169 author={Crookes, D and Benkrid, K and Bouridane, A and Alotaibi, K and Benkrid, A},
journal={IEE Proceedings-Vision, Image and Signal Processing}, 170 170 journal={IEE Proceedings-Vision, Image and Signal Processing},
volume={147}, 171 171 volume={147},
number={4}, 172 172 number={4},
pages={377--384}, 173 173 pages={377--384},
year={2000}, 174 174 year={2000},
publisher={IET} 175 175 publisher={IET}
ifcs2018_proceeding.tex
\documentclass[a4paper,conference]{IEEEtran/IEEEtran} 1 1 \documentclass[a4paper,conference]{IEEEtran/IEEEtran}
\usepackage{graphicx,color,hyperref} 2 2 \usepackage{graphicx,color,hyperref}
\usepackage{amsfonts} 3 3 \usepackage{amsfonts}
\usepackage{amsthm} 4 4 \usepackage{amsthm}
\usepackage{amssymb} 5 5 \usepackage{amssymb}
\usepackage{amsmath} 6 6 \usepackage{amsmath}
\usepackage{algorithm2e} 7 7 \usepackage{algorithm2e}
\usepackage{url} 8 8 \usepackage{url,balance}
\usepackage[normalem]{ulem} 9 9 \usepackage[normalem]{ulem}
% correct bad hyphenation here 10 10 % correct bad hyphenation here
\hyphenation{op-tical net-works semi-conduc-tor} 11 11 \hyphenation{op-tical net-works semi-conduc-tor}
\textheight=26cm 12 12 \textheight=26cm
\setlength{\footskip}{30pt} 13 13 \setlength{\footskip}{30pt}
\pagenumbering{gobble} 14 14 \pagenumbering{gobble}
\begin{document} 15 15 \begin{document}
\title{Filter optimization for real time digital processing of radiofrequency signals: application 16 16 \title{Filter optimization for real time digital processing of radiofrequency signals: application
to oscillator metrology} 17 17 to oscillator metrology}
18 18
\author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, 19 19 \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
G. Goavec-M\'erou\IEEEauthorrefmark{1}, 20 20 G. Goavec-M\'erou\IEEEauthorrefmark{1},
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} 21 21 P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } 22 22 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ 23 23 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
Email: \{pyb2,jmfriedt\}@femto-st.fr} 24 24 Email: \{pyb2,jmfriedt\}@femto-st.fr}
} 25 25 }
\maketitle 26 26 \maketitle
\thispagestyle{plain} 27 27 \thispagestyle{plain}
\pagestyle{plain} 28 28 \pagestyle{plain}
\newtheorem{definition}{Definition} 29 29 \newtheorem{definition}{Definition}
30 30
\begin{abstract} 31 31 \begin{abstract}
Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to 32 32 Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
radiofrequency signal processing. Applied to oscillator characterization in the context 33 33 radiofrequency signal processing. Applied to oscillator characterization in the context
of ultrastable clocks, stringent filtering requirements are defined by spurious signal or 34 34 of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
noise rejection needs. Since real time radiofrequency processing must be performed in a 35 35 noise rejection needs. Since real time radiofrequency processing must be performed in a
Field Programmable Array to meet timing constraints, we investigate optimization strategies 36 36 Field Programmable Array to meet timing constraints, we investigate optimization strategies
to design filters meeting rejection characteristics while limiting the hardware resources 37 37 to design filters meeting rejection characteristics while limiting the hardware resources
required and keeping timing constraints within the targeted measurement bandwidths. 38 38 required and keeping timing constraints within the targeted measurement bandwidths.
\end{abstract} 39 39 \end{abstract}
40 40
\begin{IEEEkeywords} 41 41 \begin{IEEEkeywords}
Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter 42 42 Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
\end{IEEEkeywords} 43 43 \end{IEEEkeywords}
44 44
\section{Digital signal processing of ultrastable clock signals} 45 45 \section{Digital signal processing of ultrastable clock signals}
46 46
Analog oscillator phase noise characteristics are classically performed by downconverting 47 47 Analog oscillator phase noise characteristics are classically performed by downconverting
the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, 48 48 the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In 49 49 followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by 50 50 a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. 51 51 multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
52 52
\begin{figure}[h!tb] 53 53 \begin{figure}[h!tb]
\begin{center} 54 54 \begin{center}
\includegraphics[width=.8\linewidth]{images/schema} 55 55 \includegraphics[width=.8\linewidth]{images/schema}
\end{center} 56 56 \end{center}
\caption{Fully digital oscillator phase noise characterization: the Device Under Test 57 57 \caption{Fully digital oscillator phase noise characterization: the Device Under Test
(DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and 58 58 (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals 59 59 downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite 60 60 and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays 61 61 Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
the spectral characteristics of the phase fluctuations.} 62 62 the spectral characteristics of the phase fluctuations.}
\label{schema} 63 63 \label{schema}
\end{figure} 64 64 \end{figure}
65 65
As with the analog mixer, 66 66 As with the analog mixer,
the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as 67 67 the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
well as the generation of the frequency sum signal in addition to the frequency difference. 68 68 well as the generation of the frequency sum signal in addition to the frequency difference.
These unwanted spectral characteristics must be rejected before decimating the data stream 69 69 These unwanted spectral characteristics must be rejected before decimating the data stream
for the phase noise spectral characterization. The characteristics introduced between the 70 70 for the phase noise spectral characterization. The characteristics introduced between the
downconverter 71 71 downconverter
and the decimation processing blocks are core characteristics of an oscillator characterization 72 72 and the decimation processing blocks are core characteristics of an oscillator characterization
system, and must reject out-of-band signals below the targeted phase noise -- typically in the 73 73 system, and must reject out-of-band signals below the targeted phase noise -- typically in the
sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will 74 74 sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency 75 75 use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
datastream: optimizing the performance of the filter while reducing the needed resources is 76 76 datastream: optimizing the performance of the filter while reducing the needed resources is
hence tackled in a systematic approach using optimization techniques. Most significantly, we 77 77 hence tackled in a systematic approach using optimization techniques. Most significantly, we
tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with 78 78 tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
tunable number of coefficients and tunable number of bits representing the coefficients and the 79 79 tunable number of coefficients and tunable number of bits representing the coefficients and the
data being processed. 80 80 data being processed.
81 81
\section{Finite impulse response filter} 82 82 \section{Finite impulse response filter}
83 83
We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined 84 84 We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the 85 85 by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
outputs $y_k$ 86 86 outputs $y_k$
$$y_n=\sum_{k=0}^N b_k x_{n-k}$$ 87 87 $$y_n=\sum_{k=0}^N b_k x_{n-k}$$
88 88
As opposed to an implementation on a general purpose processor in which word size is defined by the 89 89 As opposed to an implementation on a general purpose processor in which word size is defined by the
processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since 90 90 processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since
not only the coefficient values and number of taps must be defined, but also the number of bits 91 91 not only the coefficient values and number of taps must be defined, but also the number of bits
defining the coefficients and the sample size. For this reason, and because we consider pipeline 92 92 defining the coefficients and the sample size. For this reason, and because we consider pipeline
processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency 93 93 processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but 94 94 signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL). 95 95 the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL).
Since latency is not an issue in a openloop phase noise characterization instrument, the large 96 96 Since latency is not an issue in a openloop phase noise characterization instrument, the large
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, 97 97 numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
is not considered as an issue as would be in a closed loop system. 98 98 is not considered as an issue as would be in a closed loop system.
99 99
The coefficients are classically expressed as floating point values. However, this binary 100 100 The coefficients are classically expressed as floating point values. However, this binary
number representation is not efficient for fast arithmetic computation by an FPGA. Instead, 101 101 number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
we select to quantify these floating point values into integer values. This quantization 102 102 we select to quantify these floating point values into integer values. This quantization
will result in some precision loss. 103 103 will result in some precision loss.
104 104
%As illustrated in Fig. \ref{float_vs_int}, we see that we aren't 105 105 %As illustrated in Fig. \ref{float_vs_int}, we see that we aren't
%need too coefficients or too sample size. If we have lot of coefficients but a small sample size, 106 106 %need too coefficients or too sample size. If we have lot of coefficients but a small sample size,
%the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality. 107 107 %the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality.
108 108
% JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous 109 109 % JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous
% AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi) 110 110 % AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi)
% et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler 111 111 % et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler
112 112
%\begin{figure}[h!tb] 113 113 %\begin{figure}[h!tb]
%\includegraphics[width=\linewidth]{images/float-vs-integer.pdf} 114 114 %\includegraphics[width=\linewidth]{images/float-vs-integer.pdf}
%\caption{Impact of the quantization resolution of the coefficients} 115 115 %\caption{Impact of the quantization resolution of the coefficients}
%\label{float_vs_int} 116 116 %\label{float_vs_int}
%\end{figure} 117 117 %\end{figure}
118 118
\begin{figure}[h!tb] 119 119 \begin{figure}[h!tb]
\includegraphics[width=\linewidth]{images/demo_filtre} 120 120 \includegraphics[width=\linewidth]{images/demo_filtre}
\caption{Impact of the quantization resolution of the coefficients: the quantization is 121 121 \caption{Impact of the quantization resolution of the coefficients: the quantization is
set to 6~bits, setting the 30~first and 30~last coefficients out of the initial 128~band-pass 122 122 set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
filter coefficients to 0.} 123 123 the 30~first and 30~last coefficients out of the initial 128~band-pass
124 filter coefficients to 0 (red dots).}
\label{float_vs_int} 124 125 \label{float_vs_int}
\end{figure} 125 126 \end{figure}
126 127
The tradeoff between quantization resolution and number of coefficients when considering 127 128 The tradeoff between quantization resolution and number of coefficients when considering
integer operations is not trivial. As an illustration of the issue related to the 128 129 integer operations is not trivial. As an illustration of the issue related to the
relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits 129 130 relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon 130 131 a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the 131 132 quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
taps become null, making the large number of coefficients irrelevant and allowing to save 132 133 taps become null, making the large number of coefficients irrelevant and allowing to save
processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources 133 134 processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources
to reach a given rejection level, or maximizing out of band rejection for a given computational 134 135 to reach a given rejection level, or maximizing out of band rejection for a given computational
resource, will drive the investigation on cascading filters designed with varying tap resolution 135 136 resource, will drive the investigation on cascading filters designed with varying tap resolution
and tap length, as will be shown in the next section. Indeed, our development strategy closely 136 137 and tap length, as will be shown in the next section. Indeed, our development strategy closely
follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} 137 138 follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
in which basic blocks are defined and characterized before being assembled \cite{hide} 138 139 in which basic blocks are defined and characterized before being assembled \cite{hide}
in a complete processing chain. In our case, assembling the filter blocks is a simpler block 139 140 in a complete processing chain. In our case, assembling the filter blocks is a simpler block
combination process since we assume a single value to be processed and a single value to be 140 141 combination process since we assume a single value to be processed and a single value to be
generated at each clock cycle. The FIR filters will not be considered to decimate in the 141 142 generated at each clock cycle. The FIR filters will not be considered to decimate in the
current implementation: the decimation is assumed to be located after the FIR cascade at the 142 143 current implementation: the decimation is assumed to be located after the FIR cascade at the
moment. 143 144 moment.
144 145
\section{Filter optimization} 145 146 \section{Filter optimization}
146 147
A basic approach for implementing the FIR filter is to compute the transfer function of 147 148 A basic approach for implementing the FIR filter is to compute the transfer function of
a monolithic filter: this single filter defines all coefficients with the same resolution 148 149 a monolithic filter: this single filter defines all coefficients with the same resolution
(number of bits) and processes data represented with their own resolution. Meeting the 149 150 (number of bits) and processes data represented with their own resolution. Meeting the
filter shape requires a large number of coefficients, limited by resources of the FPGA since 150 151 filter shape requires a large number of coefficients, limited by resources of the FPGA since
this filter must process data stream at the radiofrequency sampling rate after the mixer. 151 152 this filter must process data stream at the radiofrequency sampling rate after the mixer.
152 153
An optimization problem \cite{leung2004handbook} aims at improving one or many 153 154 An optimization problem \cite{leung2004handbook} aims at improving one or many
performance criteria within a constrained resource environment. Amongst the tools 154 155 performance criteria within a constrained resource environment. Amongst the tools
developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to 155 156 developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to
provide a formal definition of the stated problem and search for an optimal use of available 156 157 formally define the stated problem and search for an optimal use of available
resources \cite{yu2007design, kodek1980design}. 157 158 resources \cite{yu2007design, kodek1980design}.
158 159
First we need to ensure that our problem is a real optimization problem. When 159 160 First we need to ensure that our problem is a real optimization problem. When
we design a process inside the FPGA we want reach some requirements by example the 160 161 designing a processing function in the FPGA, we aim at meeting some requirement such as
throughput, the computation time or the rejection noise... But we some limited 161 162 the throughput, the computation time or the noise rejection noise. However, due to limited
resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor) 162 163 resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor)
or LUT (Look Up Table). Since we want optimize some criteria and we have some 163 164 or LUT (Look Up Table), a tradeoff must be generally searched between performance and available
limited resources our problem is a classical optimization problem. 164 165 computational resources: optimizing some criteria within finite, limited
166 resources indeed matches the definition of a classical optimization problem.
165 167
Specifically the degrees of freedom when addressing the problem of replacing the single monolithic 166 168 Specifically the degrees of freedom when addressing the problem of replacing the single monolithic
FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$, 167 169 FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$,
the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ representing 168 170 the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ representing
the data fed to the filter. Because each FIR in the chain is fed the output of the previous stage, 169 171 the data fed to the filter. Because each FIR in the chain is fed the output of the previous stage,
the optimization of the complete processing chain within a constrained resource environment is not 170 172 the optimization of the complete processing chain within a constrained resource environment is not
trivial. The resource occupation of a FIR filter is considered as $D_i+C_i \times N_i)$ which is 171 173 trivial. The resource occupation of a FIR filter is considered as $D_i+C_i \times N_i)$ which is
the number of bits needed in a worst case condition to represent the output of the FIR. Such an 172 174 the number of bits needed in a worst case condition to represent the output of the FIR. Such an
occupied area estimate assumes that the number of gates scales as the number of bits and the number 173 175 occupied area estimate assumes that the number of gates scales as the number of bits and the number
of coefficients, but does not account for the detailed implementation of the hardware. Indeed, 174 176 of coefficients, but does not account for the detailed implementation of the hardware. Indeed,
various FPGA implementations will provide different hardware functionalities, and we shall consider 175 177 various FPGA implementations will provide different hardware functionalities, and we shall consider
at the end of the design a synthesis step using vendor software to assess the validity of the solution 176 178 at the end of the design a synthesis step using vendor software to assess the validity of the solution
found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random 177 179 found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random
Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications 178 180 Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications
are most efficiently implemented by using Digital Signal Processing (DSP) blocks whose input word 179 181 are most efficiently implemented by using DSP blocks whose input word
size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high 180 182 size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high
abstraction on the resource occupation is nevertheless selected in the following discussion in order 181 183 abstraction on the resource occupation is nevertheless selected in the following discussion in order
to leave enough degrees of freedom in the problem to try and find original solutions: too many 182 184 to leave enough degrees of freedom in the problem to try and find original solutions: too many
constraints in the initial statement of the problem leave little room for finding an optimal solution. 183 185 constraints in the initial statement of the problem leave little room for finding an optimal solution.
184 186
\begin{figure}[h!tb] 185 187 \begin{figure}[h!tb]
\begin{center} 186 188 \begin{center}
\includegraphics[width=.5\linewidth]{schema2} 187 189 \includegraphics[width=.5\linewidth]{schema2}
\caption{Shape of the filter: the bandpass BP is considered to occupy the initial 188 190 \caption{Shape of the filter transmitted power $P$ as a function of frequency:
40\% of the Nyquist frequency range, the bandstop the last 40\%, allowing 20\% transition 189 191 the bandpass BP is considered to occupy the initial
192 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition
width.} 190 193 width.}
\label{rejection-shape} 191 194 \label{rejection-shape}
\end{center} 192 195 \end{center}
\end{figure} 193 196 \end{figure}
194 197
Following these considerations, the model is expressed as: 195 198 Following these considerations, the model is expressed as:
\begin{align} 196 199 \begin{align}
\begin{cases} 197 200 \begin{cases}
\mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\ 198 201 \mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\
\mathcal{A}_i &= N_i * C_i + D_i\\ 199 202 \mathcal{A}_i &= N_i * C_i + D_i\\
\Delta_i &= \Delta _{i-1} + \mathcal{P}_i 200 203 \Delta_i &= \Delta _{i-1} + \mathcal{P}_i
\end{cases} 201 204 \end{cases}
\label{model-FIR} 202 205 \label{model-FIR}
\end{align} 203 206 \end{align}
To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the rejection of depending on $N_i$ and $C_i$, $\mathcal{A}$ 204 207 To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the rejection of depending on $N_i$ and $C_i$, $\mathcal{A}$
is a theoretical area occupation of the processing block on the FPGA, and $\Delta_i$ is the total rejection for the current stage $i$. 205 208 is a theoretical area occupation of the processing block on the FPGA, and $\Delta_i$ is the total rejection for the current stage $i$.
Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending 206 209 Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending
on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an 207 210 on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an
incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements. 208 211 incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements.
Hence, amongst various criteria including the mean or median value of the FIR response in the stopband, we have designed 209 212 Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will
a criterion aimed at avoiding ripples on passband and considering the maximum of the FIR spectral response in the stopband 210 213 be illustrated lated (section \ref{median}), we have designed
214 a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband
(Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response 211 215 (Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response
in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid 212 216 in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid
ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter 213 217 ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter
rejection capability. Weighing these two criteria allows designing the linear program to be solved. 214 218 rejection capability. Weighing these two criteria allows designing the linear program to be solved.
215 219
\begin{figure}[h!tb] 216 220 \begin{figure}[h!tb]
\includegraphics[width=\linewidth]{images/noise-rejection.pdf} 217 221 \includegraphics[width=\linewidth]{images/noise-rejection.pdf}
\caption{Rejection as a function of number of coefficients and number of bits} 218 222 \caption{Rejection as a function of number of coefficients and number of bits}
\label{noise-rejection} 219 223 \label{noise-rejection}
\end{figure} 220 224 \end{figure}
221 225
The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below 222 226 The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below
a user-defined threshold. The MILP solver is allowed to choose the number of successive 223 227 a user-defined threshold. The MILP solver is allowed to choose the number of successive
filters, within an upper bound. The last problem is to model the noise rejection. Since filter 224 228 filters, within an upper bound. The last problem is to model the noise rejection. Since filter
noise rejection capability is not modeled with linear equations, a look-up-table is generated 225 229 noise rejection capability is not modeled with linear equations, a look-up-table is generated
for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each 226 230 for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each
one of these conditions, the low-pass filter rejection defined as the mean power between 227 231 one of these conditions, the low-pass filter rejection defined as the mean power between
half the Nyquist frequency and the Nyquist frequency is stored as computed by the frequency response 228 232 half the Nyquist frequency and the Nyquist frequency is stored as computed by the frequency response
of the digital filter (Fig. \ref{noise-rejection}). 229 233 of the digital filter (Fig. \ref{noise-rejection}). An intuitive analysis of this chart hints at an optimum
234 set of tap length and number of bit for representing the coefficients along the line of the pyramidal
235 shaped rejection capability function.
230 236
Linear program formalism for solving the problem is well documented: an objective function is 231 237 Linear program formalism for solving the problem is well documented: an objective function is
defined which is linearly dependent on the parameters to be optimized. Constraints are expressed 232 238 defined which is linearly dependent on the parameters to be optimized. Constraints are expressed
as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}. 233 239 as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}.
With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this: 234 240 With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this:
\paragraph{Variables} 235 241 \paragraph{Variables}
\begin{align*} 236 242 \begin{align*}
x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\ 237 243 x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\
& \text{ $j$ is the stage} \\ 238 244 & \text{ $j$ is the stage} \\
& \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\ 239 245 & \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\
\end{align*} 240 246 \end{align*}
\paragraph{Constants} 241 247 \paragraph{Constants}
\begin{align*} 242 248 \begin{align*}
\mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\ 243 249 \mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\
& \text{ $p$ is the number of different filters} \\ 244 250 & \text{ $p$ is the number of different filters} \\
C(i) & \text{ % Constant to let the 245 251 C(i) & \text{ % Constant to let the
number of coefficients %} \\ & \text{ 246 252 number of coefficients %} \\ & \text{
for filter $i$}\\ 247 253 for filter $i$}\\
\pi_C(i) & \text{ % Constant to let the 248 254 \pi_C(i) & \text{ % Constant to let the
number of bits of %}\\ & \text{ 249 255 number of bits of %}\\ & \text{
each coefficient for filter $i$}\\ 250 256 each coefficient for filter $i$}\\
\mathcal{A}_{\max} & \text{ Total space available inside the FPGA} 251 257 \mathcal{A}_{\max} & \text{ Total space available inside the FPGA}
\end{align*} 252 258 \end{align*}
\paragraph{Constraints} 253 259 \paragraph{Constraints}
\begin{align} 254 260 \begin{align}
1 \leq i \leq p & \nonumber\\ 255 261 1 \leq i \leq p & \nonumber\\
1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\ 256 262 1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\
\forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\ 257 263 \forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\
\mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\ 258 264 \mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\
\forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \forall i, x_{i,j} \times \mathcal{A}_i \label{cstr_size} \\ 259 265 \forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \forall i, x_{i,j} \times \mathcal{A}_i \label{cstr_size} \\
\mathcal{S} \leq \mathcal{S}_{\max}\nonumber \\ 260 266 \mathcal{S} \leq \mathcal{S}_{\max}\nonumber \\
\mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\ 261 267 \mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\
\forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \forall i, x_{i,j} \times \mathcal{R}_i \label{cstr_rejection} \\ 262 268 \forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \forall i, x_{i,j} \times \mathcal{R}_i \label{cstr_rejection} \\
\mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\ 263 269 \mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\
& \text{ (e.g. 160~dB here)}\nonumber\\\nonumber 264 270 & \text{ (e.g. 160~dB here)}\nonumber\\\nonumber
\end{align} 265 271 \end{align}
\paragraph{Goal} 266 272 \paragraph{Goal}
\begin{align*} 267 273 \begin{align*}
\min \mathcal{S}_q 268 274 \min \mathcal{S}_q
\end{align*} 269 275 \end{align*}
270 276
% AH j'aimerai mettre deux equations avec un label mais je ne sais pas comment faire 271 277 % AH j'aimerai mettre deux equations avec un label mais je ne sais pas comment faire
The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on 272 278 The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on
the previous occupation and the occupation of current selected filter (it is possible 273 279 the previous occupation and the occupation of current selected filter (it is possible
that no filter is selected for this stage). And the second one \ref{cstr_rejection} 274 280 that no filter is selected for this stage). And the second one \ref{cstr_rejection}
means the same thing but for the rejection, the rejection depends the previous rejection 275 281 means the same thing but for the rejection, the rejection depends the previous rejection
plus the rejection of selected filter. 276 282 plus the rejection of selected filter.
277 283
284 \subsection{Low bandpass ripple and maximum rejection criteria}
285
The MILP solver provides a solution to the problem by selecting a series of small FIR with 278 286 The MILP solver provides a solution to the problem by selecting a series of small FIR with
increasing number of bits representing data and coefficients as well as an increasing number 279 287 increasing number of bits representing data and coefficients as well as an increasing number
of coefficients, instead of a single monolithic filter. Fig. \ref{compare-fir} exhibits the 280 288 of coefficients, instead of a single monolithic filter. Fig. \ref{compare-fir} exhibits the
performance comparison between one solution and a monolithic FIR when selecting a cutoff 281 289 performance comparison between one solution and a monolithic FIR when selecting a cutoff
frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the 282 290 frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the
same space usage are provided as selected by the MILP solver. The FIR cascade provides improved 283 291 same space usage are provided as selected by the MILP solver. The FIR cascade provides improved
rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to 284 292 rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to
be tuned or compensated for. 285 293 be tuned or compensated for.
286 294
\begin{figure}[h!tb] 287 295 \begin{figure}[h!tb]
% \includegraphics[width=\linewidth]{images/compare-fir.pdf} 288 296 % \includegraphics[width=\linewidth]{images/compare-fir.pdf}
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf} 289 297 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf}
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR 290 298 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
with a cutoff frequency set at half the Nyquist frequency.} 291 299 with a cutoff frequency set at half the Nyquist frequency.}
\label{compare-fir} 292 300 \label{compare-fir}
\end{figure} 293 301 \end{figure}
294 302
The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}. 295 303 The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}.
296 304
\begin{table}[h!tb] 297 305 \begin{table}[h!tb]
\caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade 298 306 \caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade
identified as optimal by the MILP solver within a finite resource criterion. The last line refers 299 307 identified as optimal by the MILP solver within a finite resource criterion. The last line refers
to available resources on a Zynq-7020 as found on the Zedboard.} 300 308 to available resources on a Zynq-7020 as found on the Zedboard.}
\begin{center} 301 309 \begin{center}
\begin{tabular}{|c|cccc|}\hline 302 310 \begin{tabular}{|c|cccc|}\hline
FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline 303 311 FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline
1 (monolithic) & 1 & 76183 & 220 & -162 \\ 304 312 1 (monolithic) & 1 & 76183 & 220 & -162 \\
5 & 5 & 18597 & 220 & -160 \\ 305 313 5 & 5 & 18597 & 220 & -160 \\
10 & 8 & 24729 & 220 & -161 \\\hline\hline 306 314 10 & 8 & 24729 & 220 & -161 \\\hline\hline
\textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline 307 315 \textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline
\end{tabular} 308 316 \end{tabular}
\end{center} 309 317 \end{center}
%\vspace{-0.7cm} 310 318 %\vspace{-0.7cm}
\label{t1} 311 319 \label{t1}
\end{table} 312 320 \end{table}
313 321
322 \subsection{Alternate criteria}\label{median}
323
324 Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer
325 function, namely low ripple in the bandpass defined as the first 40\% of the frequency
326 range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for
327 demonstrating the need to properly select the optimization criterion, two cases of poor
328 filter shapes obtained by selecting the mean value and median value of the rejection,
329 with no consideration for the ripples in the bandpass. The results of the optimizations,
330 in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}.
331
332 \begin{figure}[h!tb]
333 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean.pdf}
334 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
335 with a cutoff frequency set at half the Nyquist frequency.}
336 \label{compare-mean}
337 \end{figure}
338
339 In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not
340 acceptable since the notch at the end of the transition band compensates for some unacceptable
341 rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive
342 high frequency spurious components to be aliased at low frequency when decimating the signal.
343 Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and
344 and slowly decaying transfer function starting to attenuate spectral components well before the
345 transition band starts. Such issues are partly aleviated by replacing a mean rejection value with
346 a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for
347 the reasons stated previously and much poorer than those found with the maximum rejection criterion
348 selected earlier (Fig. \ref{compare-fir}).
349
350 \begin{figure}[h!tb]
351 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median.pdf}
352 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
353 with a cutoff frequency set at half the Nyquist frequency.}
354 \label{compare-median}
355 \end{figure}
356
\section{Filter coefficient selection} 314 357 \section{Filter coefficient selection}
315 358
The coefficients of a single monolithic filter are computed as the impulse response 316 359 The coefficients of a single monolithic filter are computed as the impulse response
of the filter transfer function, and practically approximated by a multitude of methods 317 360 of the filter transfer function, and practically approximated by a multitude of methods
including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing 318 361 including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing
(Matlab's {\tt fir1} function). 319 362 (Matlab's {\tt fir1} function).
320 363
\begin{figure}[h!tb] 321 364 \begin{figure}[h!tb]
\includegraphics[width=\linewidth]{images/fir1-vs-firls} 322 365 \includegraphics[width=\linewidth]{images/fir1-vs-firls}
\caption{Evolution of the rejection capability of least-square optimized filters and Hamming 323 366 \caption{Evolution of the rejection capability of least-square optimized filters and Hamming
FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit 324 367 FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit
encoded integers.} 325 368 encoded integers.}
\label{2} 326 369 \label{2}
\end{figure} 327 370 \end{figure}
328 371
Cascading filters opens a new optimization opportunity by 329 372 Cascading filters opens a new optimization opportunity by
selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2} 330 373 selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2}
illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better 331 374 illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better
rejection than {\tt firls}: since the linear solver increases the number of coefficients along 332 375 rejection than {\tt firls}: since the linear solver increases the number of coefficients along
the processing chain, the type of selected filter also changes depending on the number of coefficients 333 376 the processing chain, the type of selected filter also changes depending on the number of coefficients
and evolves along the processing chain. 334 377 and evolves along the processing chain.
335 378
\section{Conclusion} 336 379 \section{Conclusion}
337 380
We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate 338 381 We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate
Array for improved noise rejection within constrained resource occupation, as needed for 339 382 Array for improved noise rejection within constrained resource occupation, as needed for
real time processing of radiofrequency signal when characterizing spectral phase noise 340 383 real time processing of radiofrequency signal when characterizing spectral phase noise
characteristics of stable oscillators. The flexibility of the digital approach makes the result 341 384 characteristics of stable oscillators. The flexibility of the digital approach makes the result
best suited for closing the loop and using the measurement output in a feedback loop for 342 385 best suited for closing the loop and using the measurement output in a feedback loop for
controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior 343 386 controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior
is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical 344 387 is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical
atomic transition). 345 388 atomic transition).
346 389
\section*{Acknowledgement} 347 390 \section*{Acknowledgement}
348 391
This work is supported by the ANR Programme d'Investissement d'Avenir in 349 392 This work is supported by the ANR Programme d'Investissement d'Avenir in
progress at the Time and Frequency Departments of the FEMTO-ST Institute 350 393 progress at the Time and Frequency Departments of the FEMTO-ST Institute
(Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. 351 394 (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and 352 395 The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and
fruitful discussions. 353 396 fruitful discussions.
354 397
\bibliographystyle{IEEEtran} 355 398 \bibliographystyle{IEEEtran}
399 \balance
\bibliography{references,biblio} 356 400 \bibliography{references,biblio}
\end{document} 357 401 \end{document}
358 402
\section{Contexte d'ordonnancement} 359 403 \section{Contexte d'ordonnancement}
Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement 360 404 Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement
et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait 361 405 et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait
nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement 362 406 nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement
et d'optimisation. 363 407 et d'optimisation.
364 408
\subsection{D\'efinition du vocabulaire} 365 409 \subsection{D\'efinition du vocabulaire}
Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions 366 410 Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions
importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} : 367 411 importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} :
\begin{definition} 368 412 \begin{definition}
\label{def-ordo1} 369 413 \label{def-ordo1}
Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ : 370 414 Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ :
$V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$. 371 415 $V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$.
\end{definition} 372 416 \end{definition}
373 417
Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances 374 418 Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances
des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de 375 419 des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de
chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors 376 420 chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors
la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son 377 421 la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son
temps d'ex\'ecution. 378 422 temps d'ex\'ecution.
379 423
Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est : 380 424 Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est :
\begin{definition} 381 425 \begin{definition}
\label{def-ordo2} 382 426 \label{def-ordo2}
L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec 383 427 L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec
l'objectif d'optimiser un ou plusieurs critères de performance. 384 428 l'objectif d'optimiser un ou plusieurs critères de performance.
\end{definition} 385 429 \end{definition}
386 430
Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}. 387 431 Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}.
En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches. 388 432 En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches.
Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement. 389 433 Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement.
390 434
En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela, 391 435 En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela,
il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles 392 436 il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles
sont les m\'ethodes qu'on peut appliquer. 393 437 sont les m\'ethodes qu'on peut appliquer.
394 438
Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories : 395 439 Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories :
\begin{itemize} 396 440 \begin{itemize}
\item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes 397 441 \item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes
les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e. 398 442 les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e.
\item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps, 399 443 \item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps,
les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter 400 444 les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter
des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas, 401 445 des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas,
on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une 402 446 on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une
t\^ache de fin. 403 447 t\^ache de fin.
\item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où 404 448 \item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où
il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème 405 449 il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème
que nous traitons ici. 406 450 que nous traitons ici.
\end{itemize} 407 451 \end{itemize}
408 452
Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications 409 453 Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications
de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes. 410 454 de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes.
411 455
Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de 412 456 Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de
critères possibles. Nous allons donc parler des principaux : 413 457 critères possibles. Nous allons donc parler des principaux :
\begin{itemize} 414 458 \begin{itemize}
\item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation 415 459 \item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation
les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des 416 460 les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des
t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant 417 461 t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant
la fin d'ex\'ecution au plus tôt. 418 462 la fin d'ex\'ecution au plus tôt.
\item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches 419 463 \item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches
et d'optimiser ce r\'esultat. 420 464 et d'optimiser ce r\'esultat.
\item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees. 421 465 \item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees.
\end{itemize} 422 466 \end{itemize}
423 467
En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation 424 468 En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation
multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un 425 469 multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un
des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet 426 470 des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet
de faire le meilleur compromis entre tous les critères. 427 471 de faire le meilleur compromis entre tous les critères.
428 472
\subsection{Formalisation du problème} 429 473 \subsection{Formalisation du problème}
\label{formalisation} 430 474 \label{formalisation}
Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser 431 475 Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser
formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes} 432 476 formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes}
et nous essayerons de les formaliser le plus finement possible. 433 477 et nous essayerons de les formaliser le plus finement possible.
434 478
Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres 435 479 Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres
que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une 436 480 que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une
t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble. 437 481 t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble.
438 482
Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs : 439 483 Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs :
\begin{itemize} 440 484 \begin{itemize}
\item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge. 441 485 \item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge.
En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge. 442 486 En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge.
Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la 443 487 Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la
dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee 444 488 dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee
et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2 445 489 et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2
\item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements 446 490 \item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements
les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$. 447 491 les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$.
\item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent). 448 492 \item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent).
Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du 449 493 Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du
flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$. 450 494 flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$.
\item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp. 451 495 \item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp.
est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette 452 496 est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette
fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$ 453 497 fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$
et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$. 454 498 et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$.
\item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle 455 499 \item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle
fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la 456 500 fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la
t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$. 457 501 t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$.
\item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc. 458 502 \item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc.
Nous nommerons $\mathcal{A}_i$ cette taille. 459 503 Nous nommerons $\mathcal{A}_i$ cette taille.
\item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter 460 504 \item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter
la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\ 461 505 la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\
%TODO Est-ce vraiment un paramètre ? 462 506 %TODO Est-ce vraiment un paramètre ?
\end{itemize} 463 507 \end{itemize}
464 508
Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations 465 509 Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations
que nous avons identifi\'ees : 466 510 que nous avons identifi\'ees :
\begin{itemize} 467 511 \begin{itemize}
\item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution 468 512 \item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution
de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes. 469 513 de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes.
\item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart 470 514 \item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart
et les paramètres internes de la t\^ache. 471 515 et les paramètres internes de la t\^ache.
\item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit 472 516 \item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit
sortant et des variables internes de la t\^ache. 473 517 sortant et des variables internes de la t\^ache.
\item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$ 474 518 \item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$
\end{itemize} 475 519 \end{itemize}
Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche, 476 520 Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche,
sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions. 477 521 sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions.
478 522
Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit 479 523 Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit
un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes : 480 524 un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes :
481 525
\paragraph{Contrainte de pr\'ecision :} 482 526 \paragraph{Contrainte de pr\'ecision :}
Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre : 483 527 Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre :
\begin{align*} 484 528 \begin{align*}
\pi _i ^+ \geq \pi _j ^- 485 529 \pi _i ^+ \geq \pi _j ^-
\end{align*} 486 530 \end{align*}
487 531
\paragraph{Contrainte de d\'ebit :} 488 532 \paragraph{Contrainte de d\'ebit :}
Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre : 489 533 Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre :
\begin{align*} 490 534 \begin{align*}
d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache} 491 535 d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache}
\end{align*} 492 536 \end{align*}
493 537
\paragraph{Contrainte de synchronisation :} 494 538 \paragraph{Contrainte de synchronisation :}
Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles 495 539 Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles
et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même. 496 540 et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même.
Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors : 497 541 Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors :
\begin{align*} 498 542 \begin{align*}
\forall \text{ chemin } \mathcal{C}1(s, .., f), 499 543 \forall \text{ chemin } \mathcal{C}1(s, .., f),
\forall \text{ chemin } \mathcal{C}2(s, .., f) 500 544 \forall \text{ chemin } \mathcal{C}2(s, .., f)
\text{ tel que } \mathcal{C}1 \neq \mathcal{C}2 501 545 \text{ tel que } \mathcal{C}1 \neq \mathcal{C}2
\Rightarrow 502 546 \Rightarrow
\sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i 503 547 \sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i
\end{align*} 504 548 \end{align*}
505 549
\paragraph{Contrainte de place :} 506 550 \paragraph{Contrainte de place :}
Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ : 507 551 Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ :
\begin{align*} 508 552 \begin{align*}
\sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA} 509 553 \sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA}
\end{align*} 510 554 \end{align*}
511 555
\subsection{Exemples de mod\'elisation} 512 556 \subsection{Exemples de mod\'elisation}
\label{exemples-modeles} 513 557 \label{exemples-modeles}
Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle. 514 558 Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle.
Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit. 515 559 Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit.
516 560
Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant 517 561 Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant
que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$. 518 562 que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$.
519 563
Donc d'après notre mod\'elisation : 520 564 Donc d'après notre mod\'elisation :
\begin{itemize} 521 565 \begin{itemize}
\item $N \in \mathcal{P}_i$ 522 566 \item $N \in \mathcal{P}_i$
%TODO N ou 1 ? 523 567 %TODO N ou 1 ?
\item $\delta _i = N\ c.h.$ (coup d'horloge) 524 568 \item $\delta _i = N\ c.h.$ (coup d'horloge)
\item $\pi _i ^+ = \pi _i ^- = 16 bits$ 525 569 \item $\pi _i ^+ = \pi _i ^- = 16 bits$
\item $f _i ^+ = f _i ^-$ 526 570 \item $f _i ^+ = f _i ^-$
\item $q _i ^+ = q _i ^- / N$ 527 571 \item $q _i ^+ = q _i ^- / N$
\item $d _i ^+ = q _i ^- / N / f _i ^-$ 528 572 \item $d _i ^+ = q _i ^- / N / f _i ^-$
\item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\ 529 573 \item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\
%TODO Je ne sais pas trouver la taille... 530 574 %TODO Je ne sais pas trouver la taille...
\end{itemize} 531 575 \end{itemize}
@article{yu2007design, 1 1 @article{yu2007design,
title={Design of linear phase {FIR} filters in subexpression space using mixed integer linear programming}, 2 2 title={Design of linear phase {FIR} filters in subexpression space using mixed integer linear programming},
author={Yu, Ya Jun and Lim, Yong Ching}, 3 3 author={Yu, Ya Jun and Lim, Yong Ching},
journal={IEEE Transactions on Circuits and Systems I: Regular Papers}, 4 4 journal={IEEE Transactions on Circuits and Systems I: Regular Papers},
volume={54}, 5 5 volume={54},
number={10}, 6 6 number={10},
pages={2330--2338}, 7 7 pages={2330--2338},
year={2007}, 8 8 year={2007},
publisher={IEEE} 9 9 publisher={IEEE}
} 10 10 }
11 11
@article{kodek1980design, 12 12 @article{kodek1980design,
title={Design of optimal finite wordlength {FIR} digital filters using integer 13 13 title={Design of optimal finite wordlength {FIR} digital filters using integer
programming techniques}, 14 14 programming techniques},
author={Kodek, Dusan}, 15 15 author={Kodek, Dusan},
journal={IEEE Transactions on Acoustics, Speech, and Signal Processing}, 16 16 journal={IEEE Transactions on Acoustics, Speech, and Signal Processing},
volume={28}, 17 17 volume={28},
number={3}, 18 18 number={3},
pages={304--308}, 19 19 pages={304--308},
year={1980}, 20 20 year={1980},
publisher={IEEE} 21 21 publisher={IEEE}
} 22 22 }
23 23
@book{leung2004handbook, 24 24 @book{leung2004handbook,
title={Handbook of scheduling: algorithms, models, and performance analysis}, 25 25 title={Handbook of scheduling: algorithms, models, and performance analysis},
author={Leung, Joseph YT}, 26 26 author={Leung, Joseph YT},
year={2004}, 27 27 year={2004},
publisher={CRC Press} 28 28 publisher={CRC Press}
} 29 29 }
30 30
@misc{glpk, 31 31 @misc{glpk,
title={\url{https://www.gnu.org/software/glpk/}}, 32 32 title={\url{https://www.gnu.org/software/glpk/}},
note={availble online, accessed Jan. 2018} 33 33 note={availble online, accessed May 2018}
} 34 34 }
35 35
@article{rsi, 36 36 @article{rsi,
title={Oscillator metrology with software defined radio}, 37 37 title={Oscillator metrology with software defined radio},
author={Sherman, Jeff A and J{\"o}rdens, Robert}, 38 38 author={Sherman, Jeff A and J{\"o}rdens, Robert},
journal={Review of Scientific Instruments}, 39 39 journal={Review of Scientific Instruments},
volume={87}, 40 40 volume={87},
number={5}, 41 41 number={5},
pages={054711}, 42 42 pages={054711},