Commit 27f5f41088d7ee4bb8c9bad2091378acee58cd0e

Authored by Arthur HUGEAT
1 parent b0ed3be3ee
Exists in master

Article étendu.

Showing 3 changed files with 679 additions and 4 deletions Inline Diff

ifcs2018_abstract.aux 1 1 ifcs2018_abstract.aux
ifcs2018_abstract.bbl 2 2 ifcs2018_abstract.bbl
ifcs2018_abstract.blg 3 3 ifcs2018_abstract.blg
ifcs2018_abstract.log 4 4 ifcs2018_abstract.log
ifcs2018_abstract.out 5 5 ifcs2018_abstract.out
ifcs2018_abstract.pdf 6 6 ifcs2018_abstract.pdf
7 7
ifcs2018_proceeding.aux 8 8 ifcs2018_proceeding.aux
ifcs2018_proceeding.bbl 9 9 ifcs2018_proceeding.bbl
ifcs2018_proceeding.blg 10 10 ifcs2018_proceeding.blg
ifcs2018_proceeding.log 11 11 ifcs2018_proceeding.log
ifcs2018_proceeding.out 12 12 ifcs2018_proceeding.out
ifcs2018_proceeding.pdf 13 13 ifcs2018_proceeding.pdf
14 14
ifcs2018_poster.aux 15 15 ifcs2018_poster.aux
ifcs2018_poster.log 16 16 ifcs2018_poster.log
ifcs2018_poster.out 17 17 ifcs2018_poster.out
ifcs2018_poster.pdf 18 18 ifcs2018_poster.pdf
19 19
20 ifcs2018_journal.aux
21 ifcs2018_journal.bbl
22 ifcs2018_journal.blg
23 ifcs2018_journal.log
24 ifcs2018_journal.out
# source: https://tex.stackexchange.com/questions/40738/how-to-properly-make-a-latex-project 1 1 # source: https://tex.stackexchange.com/questions/40738/how-to-properly-make-a-latex-project
2 2
TEX = pdflatex -shell-escape -interaction=nonstopmode -file-line-error 3 3 TEX = pdflatex -shell-escape -interaction=nonstopmode -file-line-error
BIB = bibtex 4 4 BIB = bibtex
TARGET = ifcs2018 5 5 TARGET = ifcs2018
6 6
all: $(TARGET)_abstract $(TARGET)_poster $(TARGET)_proceeding 7 7 all: $(TARGET)_abstract $(TARGET)_poster $(TARGET)_proceeding $(TARGET)_journal
8 8
view: $(TARGET) 9 9 view: $(TARGET)
evince $(TARGET).pdf 10 10 evince $(TARGET).pdf
11 11
view_poster: $(TARGET)_poster 12 12 view_poster: $(TARGET)_poster
evince $(TARGET)_poster.pdf 13 13 evince $(TARGET)_poster.pdf
14 14
$(TARGET)_abstract: $(TARGET)_abstract.tex references.bib biblio.bib 15 15 $(TARGET)_abstract: $(TARGET)_abstract.tex references.bib biblio.bib
$(TEX) $@.tex 16 16 $(TEX) $@.tex
$(BIB) $@ 17 17 $(BIB) $@
$(TEX) $@.tex 18 18 $(TEX) $@.tex
$(TEX) $@.tex 19 19 $(TEX) $@.tex
20 20
$(TARGET)_poster: 21 21 $(TARGET)_poster:
$(TEX) $@.tex 22 22 $(TEX) $@.tex
$(TEX) $@.tex 23 23 $(TEX) $@.tex
24 24
$(TARGET)_proceeding: $(TARGET)_proceeding.tex references.bib biblio.bib 25 25 $(TARGET)_proceeding: $(TARGET)_proceeding.tex references.bib biblio.bib
$(TEX) $@.tex 26 26 $(TEX) $@.tex
$(BIB) $@ 27 27 $(BIB) $@
$(TEX) $@.tex 28 28 $(TEX) $@.tex
$(TEX) $@.tex 29 29 $(TEX) $@.tex
30 30
31 $(TARGET)_journal: $(TARGET)_journal.tex references.bib biblio.bib
32 $(TEX) $@.tex
33 $(BIB) $@
34 $(TEX) $@.tex
35 $(TEX) $@.tex
36
clean: 31 37 clean:
rm -f $(TARGET).aux $(TARGET).log $(TARGET).out $(TARGET).bbl $(TARGET).blg 32 38 rm -f $(TARGET)_abstract.aux $(TARGET)_abstract.log $(TARGET)_abstract.out $(TARGET)_abstract.bbl $(TARGET)_abstract.blg
rm -f $(TARGET)_proceeding.aux $(TARGET)_proceeding.log $(TARGET)_proceeding.out $(TARGET)_proceeding.bbl $(TARGET)_proceeding.blg 33
ifcs2018_journal.tex
File was created 1 % JMF : revoir l'abstract : on y avait mis le Zynq7010 de la redpitaya en montrant
2 % comment optimiser les perfs a surface finie. Ici aussi on tombait dans le cas ou`
3 % la solution a 1 seul FIR n'etait simplement pas synthetisable => fusionner les deux
4 % contributions pour le papier TUFFC
5
6 \documentclass[a4paper,conference]{IEEEtran/IEEEtran}
7 \usepackage{graphicx,color,hyperref}
8 \usepackage{amsfonts}
9 \usepackage{amsthm}
10 \usepackage{amssymb}
11 \usepackage{amsmath}
12 \usepackage{algorithm2e}
13 \usepackage{url,balance}
14 \usepackage[normalem]{ulem}
15 % correct bad hyphenation here
16 \hyphenation{op-tical net-works semi-conduc-tor}
17 \textheight=26cm
18 \setlength{\footskip}{30pt}
19 \pagenumbering{gobble}
20 \begin{document}
21 \title{Filter optimization for real time digital processing of radiofrequency signals: application
22 to oscillator metrology}
23
24 \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
25 G. Goavec-M\'erou\IEEEauthorrefmark{1},
26 P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
27 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
28 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
29 Email: \{pyb2,jmfriedt\}@femto-st.fr}
30 }
31 \maketitle
32 \thispagestyle{plain}
33 \pagestyle{plain}
34 \newtheorem{definition}{Definition}
35
36 \begin{abstract}
37 Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
38 radiofrequency signal processing. Applied to oscillator characterization in the context
39 of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
40 noise rejection needs. Since real time radiofrequency processing must be performed in a
41 Field Programmable Array to meet timing constraints, we investigate optimization strategies
42 to design filters meeting rejection characteristics while limiting the hardware resources
43 required and keeping timing constraints within the targeted measurement bandwidths.
44 \end{abstract}
45
46 \begin{IEEEkeywords}
47 Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
48 \end{IEEEkeywords}
49
50 \section{Digital signal processing of ultrastable clock signals}
51
52 Analog oscillator phase noise characteristics are classically performed by downconverting
53 the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
54 followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
55 a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
56 multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
57
58 \begin{figure}[h!tb]
59 \begin{center}
60 \includegraphics[width=.8\linewidth]{images/schema}
61 \end{center}
62 \caption{Fully digital oscillator phase noise characterization: the Device Under Test
63 (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
64 downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
65 and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
66 Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
67 the spectral characteristics of the phase fluctuations.}
68 \label{schema}
69 \end{figure}
70
71 As with the analog mixer,
72 the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
73 well as the generation of the frequency sum signal in addition to the frequency difference.
74 These unwanted spectral characteristics must be rejected before decimating the data stream
75 for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
76 downconverter
77 and the decimation processing blocks are core characteristics of an oscillator characterization
78 system, and must reject out-of-band signals below the targeted phase noise -- typically in the
79 sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
80 use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
81 datastream: optimizing the performance of the filter while reducing the needed resources is
82 hence tackled in a systematic approach using optimization techniques. Most significantly, we
83 tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
84 tunable number of coefficients and tunable number of bits representing the coefficients and the
85 data being processed.
86
87 \section{Finite impulse response filter}
88
89 We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined
90 by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
91 outputs $y_k$
92 $$y_n=\sum_{k=0}^N b_k x_{n-k}$$
93
94 As opposed to an implementation on a general purpose processor in which word size is defined by the
95 processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since
96 not only the coefficient values and number of taps must be defined, but also the number of bits
97 defining the coefficients and the sample size. For this reason, and because we consider pipeline
98 processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
99 signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
100 the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level.
101 Since latency is not an issue in a openloop phase noise characterization instrument, the large
102 numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
103 is not considered as an issue as would be in a closed loop system.
104
105 The coefficients are classically expressed as floating point values. However, this binary
106 number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
107 we select to quantify these floating point values into integer values. This quantization
108 will result in some precision loss.
109
110 %As illustrated in Fig. \ref{float_vs_int}, we see that we aren't
111 %need too coefficients or too sample size. If we have lot of coefficients but a small sample size,
112 %the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality.
113
114 % JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous
115 % AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi)
116 % et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler
117
118 %\begin{figure}[h!tb]
119 %\includegraphics[width=\linewidth]{images/float-vs-integer.pdf}
120 %\caption{Impact of the quantization resolution of the coefficients}
121 %\label{float_vs_int}
122 %\end{figure}
123
124 \begin{figure}[h!tb]
125 \includegraphics[width=\linewidth]{images/demo_filtre}
126 \caption{Impact of the quantization resolution of the coefficients: the quantization is
127 set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
128 the 30~first and 30~last coefficients out of the initial 128~band-pass
129 filter coefficients to 0 (red dots).}
130 \label{float_vs_int}
131 \end{figure}
132
133 The tradeoff between quantization resolution and number of coefficients when considering
134 integer operations is not trivial. As an illustration of the issue related to the
135 relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
136 a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
137 quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
138 taps become null, making the large number of coefficients irrelevant and allowing to save
139 processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources
140 to reach a given rejection level, or maximizing out of band rejection for a given computational
141 resource, will drive the investigation on cascading filters designed with varying tap resolution
142 and tap length, as will be shown in the next section. Indeed, our development strategy closely
143 follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
144 in which basic blocks are defined and characterized before being assembled \cite{hide}
145 in a complete processing chain. In our case, assembling the filter blocks is a simpler block
146 combination process since we assume a single value to be processed and a single value to be
147 generated at each clock cycle. The FIR filters will not be considered to decimate in the
148 current implementation: the decimation is assumed to be located after the FIR cascade at the
149 moment.
150
151 \section{Filter optimization}
152
153 A basic approach for implementing the FIR filter is to compute the transfer function of
154 a monolithic filter: this single filter defines all coefficients with the same resolution
155 (number of bits) and processes data represented with their own resolution. Meeting the
156 filter shape requires a large number of coefficients, limited by resources of the FPGA since
157 this filter must process data stream at the radiofrequency sampling rate after the mixer.
158
159 An optimization problem \cite{leung2004handbook} aims at improving one or many
160 performance criteria within a constrained resource environment. Amongst the tools
161 developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to
162 formally define the stated problem and search for an optimal use of available
163 resources \cite{yu2007design, kodek1980design}.
164
165 First we need to ensure that our problem is a real optimization problem. When
166 designing a processing function in the FPGA, we aim at meeting some requirement such as
167 the throughput, the computation time or the noise rejection noise. However, due to limited
168 resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor)
169 or LUT (Look Up Table), a tradeoff must be generally searched between performance and available
170 computational resources: optimizing some criteria within finite, limited
171 resources indeed matches the definition of a classical optimization problem.
172
173 Specifically the degrees of freedom when addressing the problem of replacing the single monolithic
174 FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$,
175 the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ needed to represent
176 the data $x_k$ fed to each filter as provided by the acquisition or previous processing stage.
177 Because each FIR in the chain is fed the output of the previous stage,
178 the optimization of the complete processing chain within a constrained resource environment is not
179 trivial. The resource occupation of a FIR filter is considered as $C_i \times N_i$ which aims
180 at approximating the number of bits needed in a worst case condition to represent the output of the
181 FIR. Indeed, the number of bits generated by the $i$th FIR is $(C_i+D_i)\times\log_2(N_i)$, but the
182 $\log$ function is avoided for its incompatibility with a linear programming description, and
183 the simple product is approximated as the number of gates needed to perform the calculation. Such an
184 occupied area estimate assumes that the number of gates scales as the number of bits and the number
185 of coefficients, but does not account for the detailed implementation of the hardware. Indeed,
186 various FPGA implementations will provide different hardware functionalities, and we shall consider
187 at the end of the design a synthesis step using vendor software to assess the validity of the solution
188 found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random
189 Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications
190 are most efficiently implemented by using DSP blocks whose input word
191 size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high
192 abstraction on the resource occupation is nevertheless selected in the following discussion in order
193 to leave enough degrees of freedom in the problem to try and find original solutions: too many
194 constraints in the initial statement of the problem leave little room for finding an optimal solution.
195
196 \begin{figure}[h!tb]
197 \begin{center}
198 \includegraphics[width=.5\linewidth]{schema2}
199 \caption{Shape of the filter transmitted power $P$ as a function of frequency:
200 the bandpass BP is considered to occupy the initial
201 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition
202 width.}
203 \label{rejection-shape}
204 \end{center}
205 \end{figure}
206
207 Following these considerations, the model is expressed as:
208 \begin{align}
209 \begin{cases}
210 \mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\
211 \mathcal{A}_i &= N_i \times C_i\\
212 \Delta_i &= \Delta _{i-1} + \mathcal{P}_i
213 \end{cases}
214 \label{model-FIR}
215 \end{align}
216 To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the stopband rejection dependence with $N_i$ and $C_i$, $\mathcal{A}_i$
217 is a theoretical area occupation of the processing block on the FPGA as discussed earlier, and $\Delta_i$ is the total rejection for the current stage $i$.
218 Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending
219 on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an
220 incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements.
221 Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will
222 be illustrated lated (section \ref{median}), we have designed
223 a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband
224 (Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response
225 in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid
226 ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter
227 rejection capability. Weighing these two criteria allows designing the linear program to be solved.
228
229 \begin{figure}[h!tb]
230 \includegraphics[width=\linewidth]{images/noise-rejection.pdf}
231 \caption{Rejection as a function of number of coefficients and number of bits}
232 \label{noise-rejection}
233 \end{figure}
234
235 The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource
236 occupation below a user-defined threshold, or as will be discussed here, aims at minimizing the area
237 needed to reach a given rejection ($\min(S_q)$ in the forthcoming discussion, Eqs. \ref{cstr_size}
238 and \ref{cstr_rejection}). The MILP solver is allowed to choose the number of successive
239 filters, within an upper bound. The last problem is to model the noise rejection. Since filter
240 noise rejection capability is not modeled with linear equations, a look-up-table is generated
241 for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each
242 one of these conditions, the low-pass filter rejection is stored as computed by the frequency response
243 of the digital filter (Fig. \ref{noise-rejection}). Various rejection criteria have been investigated,
244 including mean value of the stopband response, median value of the stopband response, or as finally
245 selected, maximum value in the stopband. An intuitive analysis of the chart of Fig. \ref{noise-rejection}
246 hints at an optimum
247 set of tap length and number of bit for representing the coefficients along the line of the pyramidal
248 shaped rejection capability function.
249
250 Linear program formalism for solving the problem is well documented: an objective function is
251 defined which is linearly dependent on the parameters to be optimized. Constraints are expressed
252 as linear equations and solved using one of the available solvers, in our case GLPK\cite{glpk}.
253 With the notations used in the description of system \ref{model-FIR}, we have defined the linear problem as:
254 \paragraph{Variables}
255 \begin{align*}
256 x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\
257 & \text{ $j$ is the stage} \\
258 & \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\
259 \end{align*}
260 \paragraph{Constants}
261 \begin{align*}
262 \mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\
263 & \text{ $p$ is the number of different filters} \\
264 % N(i) & \text{ % Constant to let the
265 % number of coefficients %} \\ & \text{
266 % for filter $i$}\\
267 % C(i) & \text{ % Constant to let the
268 % number of bits of %}\\ & \text{
269 % each coefficient for filter $i$}\\
270 \mathcal{S}_{\max} & \text{ Total space available inside the FPGA}
271 \end{align*}
272 \paragraph{Constraints}
273 \begin{align}
274 1 \leq i \leq p & \nonumber\\
275 1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\
276 \forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\
277 \mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\
278 \forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\
279 \mathcal{S}_j \leq \mathcal{S}_{\max}\nonumber \\
280 \mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\
281 \forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\
282 \mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\
283 & \text{ (e.g. 160~dB here)}\nonumber\\\nonumber
284 \end{align}
285 \paragraph{Goal}
286 \begin{align*}
287 \min \mathcal{S}_q
288 \end{align*}
289
290 The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on
291 the previous occupation and the occupation of current selected filter (it is possible
292 that no filter is selected for this stage). And the second one \ref{cstr_rejection}
293 means the same thing but for the rejection, the rejection depends the previous rejection
294 plus the rejection of selected filter.
295
296 \subsection{Low bandpass ripple and maximum rejection criteria}
297
298 The MILP solver provides a solution to the problem by selecting a series of small FIR with
299 increasing number of bits representing data and coefficients as well as an increasing number
300 of coefficients, instead of a single monolithic filter.
301
302 \begin{figure}[h!tb]
303 % \includegraphics[width=\linewidth]{images/compare-fir.pdf}
304 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf}
305 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
306 with a cutoff frequency set at half the Nyquist frequency.}
307 \label{compare-fir}
308 \end{figure}
309
310 Fig. \ref{compare-fir} exhibits the
311 performance comparison between one solution and a monolithic FIR when selecting a cutoff
312 frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the
313 same space usage are provided as selected by the MILP solver. The FIR cascade provides improved
314 rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to
315 be tuned or compensated for.
316
317
318 The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}.
319 We have considered a set of resources representative of the hardware platform we work on,
320 Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results reported in
321 Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to
322 the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10
323 filters fit in the available resources. However, in all cases the DSP resources are fully
324 used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software,
325 implementing the design fails due to the excessive resource usage preventing routing the signals
326 on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization
327 procedure by finding non-trivial solutions matching resource constraints, but on the other
328 hand also illustrates the limitation of a model with an abstraction layer that does not account
329 for the detailed architecture of the hardware.
330
331 \begin{table}[h!tb]
332 \caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade
333 identified as optimal by the MILP solver within a finite resource criterion. The last line refers
334 to available resources on a Zynq-7020 as found on the Zedboard.}
335 \begin{center}
336 \begin{tabular}{|c|cccc|}\hline
337 FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline
338 1 (monolithic) & 1 & 76183 & 220 & -162 \\
339 5 & 5 & 18597 & 220 & -160 \\
340 10 & 8 & 24729 & 220 & -161 \\\hline\hline
341 \textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline
342 %\begin{tabular}{|c|ccccc|}\hline
343 %FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline
344 %1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\
345 %5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\
346 %10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline
347 %\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline
348 \end{tabular}
349 \end{center}
350 %\vspace{-0.7cm}
351 \label{t1}
352 \end{table}
353
354 \subsection{Alternate criteria}\label{median}
355
356 Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer
357 function, namely low ripple in the bandpass defined as the first 40\% of the frequency
358 range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for
359 demonstrating the need to properly select the optimization criterion, two cases of poor
360 filter shapes obtained by selecting the mean value and median value of the rejection,
361 with no consideration for the ripples in the bandpass. The results of the optimizations,
362 in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}.
363
364 \begin{figure}[h!tb]
365 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf}
366 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
367 with a cutoff frequency set at half the Nyquist frequency.}
368 \label{compare-mean}
369 \end{figure}
370
371 In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not
372 acceptable since the notch at the end of the transition band compensates for some unacceptable
373 rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive
374 high frequency spurious components to be aliased at low frequency when decimating the signal.
375 Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and
376 and slowly decaying transfer function starting to attenuate spectral components well before the
377 transition band starts. Such issues are partly aleviated by replacing a mean rejection value with
378 a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for
379 the reasons stated previously and much poorer than those found with the maximum rejection criterion
380 selected earlier (Fig. \ref{compare-fir}).
381
382 \begin{figure}[h!tb]
383 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf}
384 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
385 with a cutoff frequency set at half the Nyquist frequency.}
386 \label{compare-median}
387 \end{figure}
388
389 \section{Filter coefficient selection}
390
391 The coefficients of a single monolithic filter are computed as the impulse response
392 of the filter transfer function, and practically approximated by a multitude of methods
393 including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing
394 (Matlab's {\tt fir1} function).
395
396 \begin{figure}[h!tb]
397 \includegraphics[width=\linewidth]{images/fir1-vs-firls}
398 \caption{Evolution of the rejection capability of least-square optimized filters and Hamming
399 FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit
400 encoded integers.}
401 \label{2}
402 \end{figure}
403
404 Cascading filters opens a new optimization opportunity by
405 selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2}
406 illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better
407 rejection than {\tt firls}: since the linear solver increases the number of coefficients along
408 the processing chain, the type of selected filter also changes depending on the number of coefficients
409 and evolves along the processing chain.
410
411 \section{Conclusion}
412
413 We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate
414 Array for improved noise rejection within constrained resource occupation, as needed for
415 real time processing of radiofrequency signal when characterizing spectral phase noise
416 characteristics of stable oscillators. The flexibility of the digital approach makes the result
417 best suited for closing the loop and using the measurement output in a feedback loop for
418 controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior
419 is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical
420 atomic transition).
421
422 \section*{Acknowledgement}
423
424 This work is supported by the ANR Programme d'Investissement d'Avenir in
425 progress at the Time and Frequency Departments of the FEMTO-ST Institute
426 (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
427 The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila
428 for support and fruitful discussions.
429
430 \bibliographystyle{IEEEtran}
431 \balance
432 \bibliography{references,biblio}
433 \end{document}
434
435 \section{Contexte d'ordonnancement}
436 Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement
437 et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait
438 nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement
439 et d'optimisation.
440
441 \subsection{D\'efinition du vocabulaire}
442 Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions
443 importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} :
444 \begin{definition}
445 \label{def-ordo1}
446 Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ :
447 $V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$.
448 \end{definition}
449
450 Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances
451 des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de
452 chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors
453 la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son
454 temps d'ex\'ecution.
455
456 Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est :
457 \begin{definition}
458 \label{def-ordo2}
459 L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec
460 l'objectif d'optimiser un ou plusieurs critères de performance.
461 \end{definition}
462
463 Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}.
464 En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches.
465 Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement.
466
467 En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela,
468 il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles
469 sont les m\'ethodes qu'on peut appliquer.
470
471 Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories :
472 \begin{itemize}
473 \item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes
474 les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e.
475 \item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps,
476 les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter
477 des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas,
478 on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une
479 t\^ache de fin.
480 \item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où
481 il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème
482 que nous traitons ici.
483 \end{itemize}
484
485 Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications
486 de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes.
487
488 Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de
489 critères possibles. Nous allons donc parler des principaux :
490 \begin{itemize}
491 \item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation
492 les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des
493 t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant
494 la fin d'ex\'ecution au plus tôt.
495 \item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches
496 et d'optimiser ce r\'esultat.
497 \item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees.
498 \end{itemize}
499
500 En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation
501 multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un
502 des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet
503 de faire le meilleur compromis entre tous les critères.
504
505 \subsection{Formalisation du problème}
506 \label{formalisation}
507 Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser
508 formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes}
509 et nous essayerons de les formaliser le plus finement possible.
510
511 Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres
512 que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une
513 t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble.
514
515 Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs :
516 \begin{itemize}
517 \item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge.
518 En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge.
519 Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la
520 dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee
521 et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2
522 \item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements
523 les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$.
524 \item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent).
525 Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du
526 flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$.
527 \item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp.
528 est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette
529 fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$
530 et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$.
531 \item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle
532 fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la
533 t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$.
534 \item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc.
535 Nous nommerons $\mathcal{A}_i$ cette taille.
536 \item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter
537 la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\
538 %TODO Est-ce vraiment un paramètre ?
539 \end{itemize}
540
541 Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations
542 que nous avons identifi\'ees :
543 \begin{itemize}
544 \item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution
545 de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes.
546 \item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart
547 et les paramètres internes de la t\^ache.
548 \item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit
549 sortant et des variables internes de la t\^ache.
550 \item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$
551 \end{itemize}
552 Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche,
553 sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions.
554
555 Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit
556 un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes :
557
558 \paragraph{Contrainte de pr\'ecision :}
559 Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre :
560 \begin{align*}
561 \pi _i ^+ \geq \pi _j ^-
562 \end{align*}
563
564 \paragraph{Contrainte de d\'ebit :}
565 Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre :
566 \begin{align*}
567 d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache}
568 \end{align*}
569
570 \paragraph{Contrainte de synchronisation :}
571 Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles
572 et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même.
573 Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors :
574 \begin{align*}
575 \forall \text{ chemin } \mathcal{C}1(s, .., f),
576 \forall \text{ chemin } \mathcal{C}2(s, .., f)
577 \text{ tel que } \mathcal{C}1 \neq \mathcal{C}2
578 \Rightarrow
579 \sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i
580 \end{align*}
581
582 \paragraph{Contrainte de place :}
583 Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ :
584 \begin{align*}