Commit 17d9a8434461cc1ed6506cf6dde1f96b1c468887

Authored by jfriedt
Exists in master

Merge branch 'master' of https://lxsd.femto-st.fr/gitlab/jfriedt/ifcs2018-article

Showing 13 changed files Inline Diff

ifcs2018_abstract.aux 1 1 ifcs2018_abstract.aux
ifcs2018_abstract.bbl 2 2 ifcs2018_abstract.bbl
ifcs2018_abstract.blg 3 3 ifcs2018_abstract.blg
ifcs2018_abstract.log 4 4 ifcs2018_abstract.log
ifcs2018_abstract.out 5 5 ifcs2018_abstract.out
ifcs2018_abstract.pdf 6 6 ifcs2018_abstract.pdf
7 7
ifcs2018_proceeding.aux 8 8 ifcs2018_proceeding.aux
ifcs2018_proceeding.bbl 9 9 ifcs2018_proceeding.bbl
ifcs2018_proceeding.blg 10 10 ifcs2018_proceeding.blg
ifcs2018_proceeding.log 11 11 ifcs2018_proceeding.log
ifcs2018_proceeding.out 12 12 ifcs2018_proceeding.out
ifcs2018_proceeding.pdf 13 13 ifcs2018_proceeding.pdf
14 14
ifcs2018_poster.aux 15 15 ifcs2018_poster.aux
ifcs2018_poster.log 16 16 ifcs2018_poster.log
ifcs2018_poster.out 17 17 ifcs2018_poster.out
ifcs2018_poster.pdf 18 18 ifcs2018_poster.pdf
19 19
20 ifcs2018_journal.aux
21 ifcs2018_journal.bbl
22 ifcs2018_journal.blg
23 ifcs2018_journal.log
24 ifcs2018_journal.out
# source: https://tex.stackexchange.com/questions/40738/how-to-properly-make-a-latex-project 1 1 # source: https://tex.stackexchange.com/questions/40738/how-to-properly-make-a-latex-project
2 2
TEX = pdflatex -shell-escape -interaction=nonstopmode -file-line-error 3 3 TEX = pdflatex -shell-escape -interaction=nonstopmode -file-line-error
BIB = bibtex 4 4 BIB = bibtex
TARGET = ifcs2018 5 5 TARGET = ifcs2018
6 6
all: $(TARGET)_abstract $(TARGET)_poster $(TARGET)_proceeding 7 7 all: $(TARGET)_abstract $(TARGET)_poster $(TARGET)_proceeding $(TARGET)_journal
8 8
view: $(TARGET) 9 9 view: $(TARGET)
evince $(TARGET).pdf 10 10 evince $(TARGET).pdf
11 11
view_poster: $(TARGET)_poster 12 12 view_poster: $(TARGET)_poster
evince $(TARGET)_poster.pdf 13 13 evince $(TARGET)_poster.pdf
14 14
$(TARGET)_abstract: $(TARGET)_abstract.tex references.bib biblio.bib 15 15 $(TARGET)_abstract: $(TARGET)_abstract.tex references.bib biblio.bib
$(TEX) $@.tex 16 16 $(TEX) $@.tex
$(BIB) $@ 17 17 $(BIB) $@
$(TEX) $@.tex 18 18 $(TEX) $@.tex
$(TEX) $@.tex 19 19 $(TEX) $@.tex
20 20
$(TARGET)_poster: 21 21 $(TARGET)_poster:
$(TEX) $@.tex 22 22 $(TEX) $@.tex
$(TEX) $@.tex 23 23 $(TEX) $@.tex
24 24
$(TARGET)_proceeding: $(TARGET)_proceeding.tex references.bib biblio.bib 25 25 $(TARGET)_proceeding: $(TARGET)_proceeding.tex references.bib biblio.bib
$(TEX) $@.tex 26 26 $(TEX) $@.tex
$(BIB) $@ 27 27 $(BIB) $@
$(TEX) $@.tex 28 28 $(TEX) $@.tex
$(TEX) $@.tex 29 29 $(TEX) $@.tex
30 30
31 $(TARGET)_journal: $(TARGET)_journal.tex references.bib biblio.bib
32 $(TEX) $@.tex
33 $(BIB) $@
34 $(TEX) $@.tex
35 $(TEX) $@.tex
36
clean: 31 37 clean:
rm -f $(TARGET).aux $(TARGET).log $(TARGET).out $(TARGET).bbl $(TARGET).blg 32 38 rm -f $(TARGET)_abstract.aux $(TARGET)_abstract.log $(TARGET)_abstract.out $(TARGET)_abstract.bbl $(TARGET)_abstract.blg
rm -f $(TARGET)_proceeding.aux $(TARGET)_proceeding.log $(TARGET)_proceeding.out $(TARGET)_proceeding.bbl $(TARGET)_proceeding.blg 33
demo_critere_filtre.m
File was created 1 clear all;
2
3 global N = 2048;
4
5 function rejection = rejection_criteria(log_data, fc)
6 N = length(log_data);
7
8 % Index of the first point in the tail fir
9 index_tail = round((fc + 0.1) * N) + 1;
10
11 % Index of th last point on the band
12 index_band = round((fc - 0.1) * N);
13
14 % Get the worst rejection in stopband
15 worst_rejection = -max(log_data(index_tail:end));
16
17 % Get the total of deviation in passband
18 worst_band = mean(-1 * abs(log_data(1:index_band)));
19
20 % Compute the rejection
21 passband_malus = 10; % weighted value to penalize the deviation in passband
22 rejection = worst_band * passband_malus + worst_rejection;
23 endfunction
24
25 function [h, log_curve, rejection] = compute_freqz(filename)
26 global N;
27
28 b = load(filename);
29 [h, w] = freqz(b, 1, N/2);
30 mag = abs(h);
31 mag = mag ./ mag(1);
32 log_curve = 20 * log10(mag);
33
34 rejection = rejection_criteria(log_curve, 0.5);
35 endfunction
36
37 # Stages
38 hTotal = ones(N/2, 1);
39 % [h, curve1, c1] = compute_freqz("filters/fir1/fir1_033_int08"); % 1) -8dB
40 % [h, curve1, c1] = compute_freqz("filters/fir1/fir1_037_int08"); % 2) -9dB
41 [h, curve1, c1] = compute_freqz("filters/fir1/fir1_037_int08");
42 hTotal = hTotal .* h;
43 % [h, curve2, c2] = compute_freqz("filters/fir1/fir1_033_int10"); % 1) -8dB
44 % [h, curve2, c2] = compute_freqz("filters/fir1/fir1_033_int10"); % 2) -9dB
45 [h, curve2, c2] = compute_freqz("filters/fir1/fir1_033_int10");
46 hTotal = hTotal .* h;
47 % [h, curve3, c3] = compute_freqz("filters/fir1/fir1_033_int08");
48 % hTotal = hTotal .* h;
49 % [h, curve4, c4] = compute_freqz("filters/fir1/fir1_033_int10");
50 % hTotal = hTotal .* h;
51 % [h, curve5, c5] = compute_freqz("filters/fir1/fir1_015_int11");
52 % hTotal = hTotal .* h;
53
54 # Log total
55 mag = abs(hTotal);
56 mag = mag ./ mag(1);
57 log_freqz = 20 * log10(mag);
58 cTotal = rejection_criteria(log_freqz, 0.5);
59
60 [ c1+c2 cTotal ]
61 % [ c1+c2+c3+c4+c5 cTotal ]
62
63 clf;
64 f_axe = [1:N/2] * 2/N;
65 hold on;
66 color = [0/255 114/255 189/255];
67 plot(f_axe, curve1, "linewidth", 1.5, "color", color);
68 plot([0 1], [-c1 -c1], "--", "linewidth", 1.5, "color", color);
69
70 color = [217/255 83/255 25/255];
71 plot(f_axe, curve2, "linewidth", 1.5, "color", color);
ifcs2018_journal.tex
File was created 1 \documentclass[a4paper,conference]{IEEEtran/IEEEtran}
2 \usepackage{graphicx,color,hyperref}
3 \usepackage{amsfonts}
4 \usepackage{amsthm}
5 \usepackage{amssymb}
6 \usepackage{amsmath}
7 \usepackage{algorithm2e}
8 \usepackage{url,balance}
9 \usepackage[normalem]{ulem}
10 \usepackage{tikz}
11 \usetikzlibrary{positioning,fit}
12 \usepackage{multirow}
13 \usepackage{scalefnt}
14
15 % correct bad hyphenation here
16 \hyphenation{op-tical net-works semi-conduc-tor}
17 \textheight=26cm
18 \setlength{\footskip}{30pt}
19 \pagenumbering{gobble}
20 \begin{document}
21 \title{Filter optimization for real time digital processing of radiofrequency signals: application
22 to oscillator metrology}
23
24 \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
25 G. Goavec-M\'erou\IEEEauthorrefmark{1},
26 P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
27 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
28 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
29 Email: \{pyb2,jmfriedt\}@femto-st.fr}
30 }
31 \maketitle
32 \thispagestyle{plain}
33 \pagestyle{plain}
34 \newtheorem{definition}{Definition}
35
36 \begin{abstract}
37 Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
38 radiofrequency signal processing. Applied to oscillator characterization in the context
39 of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
40 noise rejection needs. Since real time radiofrequency processing must be performed in a
41 Field Programmable Array to meet timing constraints, we investigate optimization strategies
42 to design filters meeting rejection characteristics while limiting the hardware resources
43 required and keeping timing constraints within the targeted measurement bandwidths.
44 \end{abstract}
45
46 \begin{IEEEkeywords}
47 Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
48 \end{IEEEkeywords}
49
50 \section{Digital signal processing of ultrastable clock signals}
51
52 Analog oscillator phase noise characteristics are classically performed by downconverting
53 the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
54 followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
55 a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
56 multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
57
58 \begin{figure}[h!tb]
59 \begin{center}
60 \includegraphics[width=.8\linewidth]{images/schema}
61 \end{center}
62 \caption{Fully digital oscillator phase noise characterization: the Device Under Test
63 (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
64 downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
65 and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
66 Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
67 the spectral characteristics of the phase fluctuations.}
68 \label{schema}
69 \end{figure}
70
71 As with the analog mixer,
72 the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
73 well as the generation of the frequency sum signal in addition to the frequency difference.
74 These unwanted spectral characteristics must be rejected before decimating the data stream
75 for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
76 downconverter
77 and the decimation processing blocks are core characteristics of an oscillator characterization
78 system, and must reject out-of-band signals below the targeted phase noise -- typically in the
79 sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
80 use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
81 datastream: optimizing the performance of the filter while reducing the needed resources is
82 hence tackled in a systematic approach using optimization techniques. Most significantly, we
83 tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
84 tunable number of coefficients and tunable number of bits representing the coefficients and the
85 data being processed.
86
87 \section{Finite impulse response filter}
88
89 We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined
90 by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
91 outputs $y_k$
92 \begin{align}
93 y_n=\sum_{k=0}^N b_k x_{n-k}
94 \label{eq:fir_equation}
95 \end{align}
96
97 As opposed to an implementation on a general purpose processor in which word size is defined by the
98 processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since
99 not only the coefficient values and number of taps must be defined, but also the number of bits
100 defining the coefficients and the sample size. For this reason, and because we consider pipeline
101 processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
102 signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
103 the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level.
104 Since latency is not an issue in a openloop phase noise characterization instrument, the large
105 numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
106 is not considered as an issue as would be in a closed loop system.
107
108 The coefficients are classically expressed as floating point values. However, this binary
109 number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
110 we select to quantify these floating point values into integer values. This quantization
111 will result in some precision loss.
112
113 \begin{figure}[h!tb]
114 \includegraphics[width=\linewidth]{images/demo_filtre}
115 \caption{Impact of the quantization resolution of the coefficients: the quantization is
116 set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
117 the 30~first and 30~last coefficients out of the initial 128~band-pass
118 filter coefficients to 0 (red dots).}
119 \label{float_vs_int}
120 \end{figure}
121
122 The tradeoff between quantization resolution and number of coefficients when considering
123 integer operations is not trivial. As an illustration of the issue related to the
124 relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
125 a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
126 quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
127 taps become null, making the large number of coefficients irrelevant and allowing to save
128 processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources
129 to reach a given rejection level, or maximizing out of band rejection for a given computational
130 resource, will drive the investigation on cascading filters designed with varying tap resolution
131 and tap length, as will be shown in the next section. Indeed, our development strategy closely
132 follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
133 in which basic blocks are defined and characterized before being assembled \cite{hide}
134 in a complete processing chain. In our case, assembling the filter blocks is a simpler block
135 combination process since we assume a single value to be processed and a single value to be
136 generated at each clock cycle. The FIR filters will not be considered to decimate in the
137 current implementation: the decimation is assumed to be located after the FIR cascade at the
138 moment.
139
140 \section{Methodology description}
141 We want create a new methodology to develop any Digital Signal Processing (DSP) chain
142 and for any hardware platform (Altera, Xilinx...). To do this we have defined an
143 abstract model to represent some basic operations of DSP.
144
145 For the moment, we are focused on only two operations: the filtering and the shift of data.
146 We have chosen this basic operation because the shifting and the filtering have already be studied in
147 lot of works {\color{red} mettre les nouvelles rรฉfรฉrence ici} hence it will be easier
148 to check and validate our results.
149
150 However having only two operations is insufficient to work with complex DSP but
151 in this paper we only want demonstrate the relevance and the efficiency of our approach.
152 In future work it will be possible to add more operations and we are able to
153 model any DSP chain.
154
155 We will apply our methodology on very simple DSP chain. We generate a digital signal
156 thanks at generator of Pseudo-Random Number (PRN) or thanks at an Analog to Digital
157 Converter (ADC). Once we have a digital signal, we filter it to decrease the noise level.
158 Finally we stored some burst of filtered samples before post-processing it.
159 % TODO: faire un schรฉma
160 In this particular case, we want optimize the filtering step to have the best noise
161 rejection for constrain number of resource or to have the minimal resources
162 consumption for a given rejection objective.
163
164 The first step of our approach is to model the DSP chain and since we just optimize
165 the filtering, we have not modeling the PRN generator or the ADC. The filtering can be
166 done by two ways. The first one we use only one FIR filter with lot of coefficients
167 to rejection the noise, we called this approach a monolithic approach. And the second one
168 we select different FIR filters with less coefficients the monolithic filter and we cascaded
169 it to filtering the signal.
170
171 After each filter we leave the possibility of shifting the filtered data to consume
172 less resources. Hence in the case of cascaded filter, we define a stage as a filter
173 and a shifter (the shift could be omitted if we do not need to divide the filtered data).
174
175 \subsection{Model of a FIR filter}
176 A cascade of filter are composed of $n$ stage. In stage $i$ ($1 \leq i \leq n$)
177 the FIR has $C_i$ coefficients and each coefficients are integer values with $\pi^C_i$
178 bits and the filtered data are shifted of $\pi^S_i$ bits. We define also $\pi^-_i$ as
179 the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage}
180 shows a filtering stage.
181
182 \begin{figure}
183 \centering
184 \begin{tikzpicture}[node distance=2cm]
185 \node[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ;
186 \node[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ;
187 \node (Start) [left of=FIR] { } ;
188 \node (End) [right of=Shift] { } ;
189
190 \node[draw,fit=(FIR) (Shift)] (Filter) { } ;
191
192 \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ;
193 \draw[->] (FIR) -- (Shift) ;
194 \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ;
195 \end{tikzpicture}
196 \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)}
197 \label{fig:fir_stage}
198 \end{figure}
199
200 FIR $i$ can reject $F(C_i, \pi_i^C)$ dB. $F$ is determined numerically.
201 To measure this rejection, we use GNU Octave software to design FIR filter coefficients thanks to two
202 algorithms (\texttt{firls} and \texttt{fir1}).
203 For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients.
204 Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively,
205 the coefficients are normalized by their absolute maximum before being scaled to integer coefficients.
206 At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the other are coded on very fewer bits.
207
208 With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter.
209 Comparing the performance between FIRs requires however a unique criterion. As shown in figure~\ref{fig:fir_mag},
210 the FIR magnitude exhibits two parts.
211
212 \begin{figure}
213 \centering
214 \begin{tikzpicture}[scale=0.3]
215 \draw[<->] (0,15) -- (0,0) -- (21,0) ;
216 \draw[thick] (0,12) -- (8,12) -- (20,0) ;
217
218 \draw (0,14) node [left] { $P$ } ;
219 \draw (20,0) node [below] { $f$ } ;
220
221 \draw[>=latex,<->] (0,14) -- (8,14) ;
222 \draw (4,14) node [above] { passband } node [below] { $40\%$ } ;
223
224 \draw[>=latex,<->] (8,14) -- (12,14) ;
225 \draw (10,14) node [above] { transition } node [below] { $20\%$ } ;
226
227 \draw[>=latex,<->] (12,14) -- (20,14) ;
228 \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ;
229
230 \draw[>=latex,<->] (16,12) -- (16,8) ;
231 \draw (16,10) node [right] { rejection } ;
232
233 \draw[dashed] (8,-1) -- (8,14) ;
234 \draw[dashed] (12,-1) -- (12,14) ;
235
236 \draw[dashed] (8,12) -- (16,12) ;
237 \draw[dashed] (12,8) -- (16,8) ;
238
239 \end{tikzpicture}
240
241 % \includegraphics[width=.5\linewidth]{images/fir_magnitude}
242 \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$:
243 the passband is considered to occupy the initial 40\% of the Nyquist frequency range,
244 the stopband the last 40\%, allowing 20\% transition width.}
245 \label{fig:fir_mag}
246 \end{figure}
247
248 In the transition band, the behavior of the filter is left free, we only care about the passband and the stopband.
249 Our first criterion considers the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion does not work because we do not consider the shape of the passband.
250 A second criterion considers the maximum rejection within the stopband minus the mean of the absolute value of passband rejection. With this criterion, the results are significantly improved as shown in figure~\ref{fig:custom_criterion}.
251
252 \begin{figure}
253 \centering
254 \includegraphics[width=\linewidth]{images/mean_criterion}
255 \caption{Mean criterion comparison between monolithic filter and cascade filters}
256 \label{fig:mean_criterion}
257 \end{figure}
258
259 \begin{figure}
260 \centering
261 \includegraphics[width=\linewidth]{images/custom_criterion}
262 \caption{Custom criterion comparison between monolithic filter and cascade filters}
263 \label{fig:custom_criterion}
264 \end{figure}
265
266 Although we have a efficient criterion to estimate the rejection of one set of coefficient
267 we have a problem when we sum two or more criterion. If the FIR filter coefficients are the same
268 between the stage, we have:
269 $$F_{total} = F_1 + F_2$$
270 But when we choose two different set of coefficient, the previous equality are not
271 true. The figure~\ref{fig:sum_rejection} illustrates the problem. The red and blue curves
272 are two different filter coefficient and we can see that their maximum on the stopband
273 are not at the same frequency. So when we sum the rejection criteria (the dotted yellow line)
274 we do not meet the dashed yellow line. Define the rejection of cascaded filters
275 is more difficult than just take the summation between all the rejection criteria of each filter.
276 However this summation gives us an upper bound for rejection although in fact we obtain
277 better rejection than expected.
278
279 \begin{figure}
280 \centering
281 \includegraphics[width=\linewidth]{images/sum_rejection}
282 \caption{Rejection of two cascaded filters}
283 \label{fig:sum_rejection}
284 \end{figure}
285
286 \section{Experiments with fixed area space}
287
288 \begin{figure}
289 \centering
290 \includegraphics[width=\linewidth]{images/max_rejection/prn_500}
291 \caption{Experimental results for design with PRN as data input and 500 a.u. as max arbitrary space}
292 \label{fig:prn_500}
293 \end{figure}
294
295 \begin{figure}
296 \centering
297 \includegraphics[width=\linewidth]{images/max_rejection/prn_1000}
298 \caption{Experimental results for design with PRN as data input and 1000 a.u. as max arbitrary space}
299 \label{fig:prn_1000}
300 \end{figure}
301
302 \begin{figure}
303 \centering
304 \includegraphics[width=\linewidth]{images/max_rejection/prn_2000}
305 \caption{Experimental results for design with PRN as data input and 2000 a.u. as max arbitrary space}
306 \label{fig:prn_2000}
307 \end{figure}
308
309 \begin{table}
310 \centering
311 \begin{tabular}{|c|c|ccc|c|c|}
312 \hline
313 \multicolumn{2}{|c|}{\multirow{2}{*}{Stage}} & \multicolumn{3}{c|}{Stage} & \multirow{2}{*}{Rejection} & \multirow{2}{*}{Area} \\ \cline{3-5}
314 \multicolumn{2}{|c|}{} & i = 1 & i = 2 & i = 3 & & \\ \hline
315 & C & 19 & - & - & & \\
316 n = 1 & $pi^C$ & 7 & - & - & 33 dB & 437 a.u. \\
317 & $pi^S$ & 0 & - & - & & \\ \hline
318 & C & 11 & 19 & - & & \\
319 n = 2 & $pi^C$ & 5 & 7 & - & 53 dB & 478 a.u. \\
320 & $pi^S$ & 16 & 0 & - & & \\ \hline
321 & C & 9 & 15 & 11 & & \\
322 n = 3 & $pi^C$ & 4 & 6 & 5 & 57 dB & 499 a.u. \\
323 & $pi^S$ & 16 & 3 & 0 & & \\ \hline
324 \end{tabular}
325 \caption{Solver results for design with PRN as data input and 500 a.u. as max arbitrary space}
326 \label{tbl:prn_500}
327 \end{table}
328
329 \begin{table}
330 \centering
331 {\scalefont{0.85}
332 \begin{tabular}{|c|c|ccccc|c|c|}
333 \hline
334 \multicolumn{2}{|c|}{\multirow{2}{*}{Stage}} & \multicolumn{5}{c|}{Stage} & \multirow{2}{*}{Rejection} & \multirow{2}{*}{Area} \\ \cline{3-7}
335 \multicolumn{2}{|c|}{} & i = 1 & i = 2 & i = 3 & i = 4 & i = 5 & & \\ \hline
336 & C & 37 & - & - & - & - & & \\
337 n = 1 & $pi^C$ & 11 & - & - & - & - & 56 dB & 999 a.u. \\
338 & $pi^S$ & 0 & - & - & - & - & & \\ \hline
339 & C & 11 & 39 & - & - & - & & \\
340 n = 2 & $pi^C$ & 5 & 13 & - & - & - & 82 dB & 972 a.u. \\
341 & $pi^S$ & 16 & 0 & - & - & - & & \\ \hline
342 & C & 9 & 31 & 19 & - & - & & \\
343 n = 3 & $pi^C$ & 7 & 8 & 7 & - & - & 93 dB & 990 a.u. \\
344 & $pi^S$ & 19 & 2 & 0 & - & - & & \\ \hline
345 & C & 9 & 19 & 17 & 11 & - & & \\
346 n = 4 & $pi^C$ & 4 & 7 & 7 & 5 & - & 99 dB & 992 a.u. \\
347 & $pi^S$ & 16 & 3 & 3 & 0 & - & & \\ \hline
348 & C & 9 & 15 & 11 & 11 & 11 & & \\
349 n = 5 & $pi^C$ & 4 & 7 & 5 & 5 & 5 & 99 dB & 998 a.u. \\
350 & $pi^S$ & 16 & 3 & 2 & 1 & 1 & & \\ \hline
351 \end{tabular}
352 }
353 \caption{Solver results for design with PRN as data input and 1000 a.u. as max arbitrary space}
354 \label{tbl:prn_1000}
355 \end{table}
356
357 \begin{table}
358 \centering
359 {\scalefont{0.85}
360 \begin{tabular}{|c|c|ccccc|c|c|}
361 \hline
362 \multicolumn{2}{|c|}{\multirow{2}{*}{Stage}} & \multicolumn{5}{c|}{Stage} & \multirow{2}{*}{Rejection} & \multirow{2}{*}{Area} \\ \cline{3-7}
363 \multicolumn{2}{|c|}{} & i = 1 & i = 2 & i = 3 & i = 4 & i = 5 & & \\ \hline
364 & C & 39 & - & - & - & - & & \\
365 n = 1 & $pi^C$ & 13 & - & - & - & - & 61 dB & 1131 a.u. \\
366 & $pi^S$ & 0 & - & - & - & - & & \\ \hline
367 & C & 37 & 39 & - & - & - & & \\
368 n = 2 & $pi^C$ & 11 & 13 & - & - & - & 117 dB & 1974 a.u. \\
369 & $pi^S$ & 17 & 0 & - & - & - & & \\ \hline
370 & C & 15 & 35 & 35 & - & - & & \\
371 n = 3 & $pi^C$ & 9 & 11 & 11 & - & - & 138 dB & 1985 a.u. \\
372 & $pi^S$ & 19 & 3 & 0 & - & - & & \\ \hline
373 & C & 11 & 27 & 27 & 23 & - & & \\
374 n = 4 & $pi^C$ & 5 & 9 & 9 & 9 & - & 148 dB & 1993 a.u. \\
375 & $pi^S$ & 16 & 3 & 2 & 0 & - & & \\ \hline
376 & C & 11 & 27 & 31 & 11 & 11 & & \\
377 n = 5 & $pi^C$ & 5 & 9 & 8 & 5 & 5 & 153 dB & 2000 a.u. \\
378 & $pi^S$ & 16 & 3 & 1 & 0 & 1 & & \\ \hline
379 \end{tabular}
380 }
381 \caption{Solver results for design with PRN as data input and 2000 a.u. as max arbitrary space}
382 \label{tbl:prn_2000}
383 \end{table}
384
385 \begin{table}
386 \centering
387 \begin{tabular}{|c|c|c|c|c|}\hline
388 Input & Stages & Computation time & Vivado time & Redpitaya time \\\hline\hline
389 & 1 & 0.02~s & $\approx$ 20 min & $\approx$ 1 min \\
390 PRN & 2 & 1.70~s & $\approx$ 20 min & $\approx$ 1 min \\
391 & 3 & 19~s & $\approx$ 20 min & $\approx$ 1 min \\\hline
392 \end{tabular}
393 \caption{Time to compute and deploy the designs for PRN 500}
394 \label{tbl:time_prn_500}
395 \end{table}
396
397 \begin{table}
398 \centering
399 \begin{tabular}{|c|c|c|c|c|}\hline
400 Input & Stages & Computation time & Vivado time & Redpitaya time \\\hline\hline
401 & 1 & 0.07~s & $\approx$ 20 min & $\approx$ 1 min \\
402 & 2 & 1.31~s & $\approx$ 20 min & $\approx$ 1 min \\
images/custom_criterion.pdf
No preview for this file type
images/max_rejection/prn_1000.pdf
No preview for this file type
images/max_rejection/prn_2000.pdf
No preview for this file type
images/max_rejection/prn_500.pdf
No preview for this file type
images/mean_criterion.pdf
No preview for this file type
images/min_area/prn_100.pdf
No preview for this file type
images/min_area/prn_150.pdf
No preview for this file type
images/min_area/prn_50.pdf
No preview for this file type
images/sum_rejection.pdf
No preview for this file type