Blame view

tf_cavity/tf_cavity_num_lp.py 4.62 KB
eb8647511   bmarechal   add LPF behav of ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
  #!/usr/bin/python
  # -*- coding: utf-8 -*-
  
  '''TF of FP cavity in reflection
  
                                     ----------
   X(s)          -----               | -tau⋅s |
  -------------->|1-R|----->(X)----->|e       |------
         |       -----       ^       ----------     |
         |                   |                      |
         |                   |                      V
       ----                ----                   ----
       |-R|                |-R|                   |-R|
       ----                ----                   ----
         |                   ^                      |
         |                   |       ----------     |
   Y(s)  V       -----       |       | -tau⋅s |     |
  <-----(X)<-----|1-R|<--------------|e       |<-----
                 -----               ----------
  
  '''
  
  '''import matplotlib as mpl
  mpl.use('pgf')
  
  def figsize(scale):
      fig_width_pt = 469.755                          # Get this from LaTeX using \the\textwidth
      inches_per_pt = 1.0/72.27                       # Convert pt to inch
      golden_mean = (5.0**0.5-1.0)/2.0            # Aesthetic ratio (you could change this)
      fig_width = fig_width_pt*inches_per_pt*scale    # width in inches
      fig_height = fig_width*golden_mean              # height in inches
      fig_size = [fig_width,fig_height]
      return fig_size
  
  pgf_with_latex = {                      # setup matplotlib to use latex for output
      "pgf.texsystem": "pdflatex",        # change this if using xetex or lautex
      "text.usetex": True,                # use LaTeX to write all text
      "font.family": "serif",
      "font.serif": [],                   # blank entries should cause plots to inherit fonts from the document
      "font.sans-serif": [],
      "font.monospace": [],
      "axes.labelsize": 10,               # LaTeX default is 10pt font.
      "text.fontsize": 10,
      "legend.fontsize": 8,               # Make the legend/label fonts a little smaller
      "xtick.labelsize": 8,
      "ytick.labelsize": 8,
      "figure.figsize": figsize(0.9),     # default fig size of 0.9 textwidth
      "pgf.preamble": [
          r"\usepackage[utf8x]{inputenc}",    # use utf8 fonts becasue your computer can handle it :)
          r"\usepackage[T1]{fontenc}",        # plots will be generated using this preamble
          ]
      }
  mpl.rcParams.update(pgf_with_latex)
  '''
  from numpy import *
  import matplotlib.pyplot as plt
  
  r = 0.99998
  L = 140e-3
  c = 299792458
  
  tau = L/c
  fsr = 1/(2*tau)
  finesse = pi*r/(1-r**2)
  print(' Finesse = %f
   FSR = %f
   FSR/Finesse = %f'%(finesse, fsr, fsr/finesse))
  
  f0 = (193e12//fsr)*fsr
  f = linspace(f0-0.1*fsr, f0+0.1*fsr, int(1e5))
  
  fm = 30e6
  
  ff = linspace(1, 1e6, int(1e5))
  
  #TF of cavity in reflection
  def Fr(w):
      s = 1j*w
      return r*(exp(-2*tau*s)-1)/(1-r**2*exp(-2*tau*s))
  
  #TF of cavity frequency-to-signal
  def Ff2s(w):
      s = 1j*w
      return (1-exp(-2*tau*s))/(2*tau*s)*(1-r**2)/(1-r**2*exp(-2*tau*s))
  
  
  G = Fr(2*pi*f)
  Glsb = Fr(2*pi*(f-fm))
  Gusb = Fr(2*pi*(f+fm))
  
  Gf2s = Ff2s(2*pi*ff)
  
  #plot setup
  fig, axarr = plt.subplots(3, 3, sharex='col')
  
  #plot bode of F(w)
  axarr[0, 1].set_ylabel('Magnitude')
  #axarr[0, 1].set_xlabel('Frequency (Hz)')
  axarr[0, 1].plot(f, abs(G))
  axarr[0, 1].grid()
  axarr[1, 1].set_ylabel('Phase (deg)')
  #axarr[1, 1].set_xlabel('Frequency (Hz)')
  axarr[1, 1].plot(f, angle(G, deg = True))
  axarr[1, 1].grid()
  
  #plot bode of Ff2s(w)
  axarr[1, 2].set_ylabel('Magnitude')
  #axarr[1, 2].set_xlabel('Frequency (Hz)')
  axarr[1, 2].set_xscale('log')
  axarr[1, 2].plot(ff, 20*log10(abs(Gf2s)))
  axarr[1, 2].grid()
  axarr[2, 2].set_ylabel('Phase (deg)')
  axarr[2, 2].set_xlabel('Frequency (Hz)')
  axarr[2, 2].set_xscale('log')
  axarr[2, 2].xaxis.set_label_coords(0.5, -0.3)
  axarr[2, 2].plot(ff, angle(Gf2s, deg = True))
  axarr[2, 2].grid()
  
  
  #PDH signal
  iG = (G*Gusb.conjugate()-G.conjugate()*Glsb).imag
  axarr[2, 1].set_ylabel('epsillon normalized')
  axarr[2, 1].set_xlabel('Frequency (Hz)')
  axarr[2, 1].xaxis.set_label_coords(0.5, -0.3)
  axarr[2, 1].plot(f, iG)
  axarr[2, 1].grid()
  
  
  #nyquist
  axarr[2, 0].set_ylabel('$j\omega$')
  axarr[2, 0].set_xlabel('$\sigma$')
  axarr[2, 0].plot(real(G), imag(G))
  axarr[2, 0].grid()
  axarr[2, 0].axis('equal')
  axarr[2, 0].set_xlim([-1.1, 1.1])
  
  #layout
  axarr[0, 0].axis('off')
  axarr[1, 0].axis('off')
  axarr[0, 2].axis('off')
  fig.subplots_adjust(wspace=0.5)
  plt.tight_layout()
  #plt.savefig('fig.pgf')
  plt.show()
  
  '''results
  
           ⎛      -2.0⋅ⅈ⋅L⋅ω ⎞
           ⎜      ───────────⎟
           ⎜           c     ⎟
         r⋅⎝-1 + ℯ           ⎠
  F(w) = ─────────────────────
               -2.0⋅ⅈ⋅L⋅ω
               ───────────
            2       c
         - r ⋅ℯ            + 1
  
  '''