Blame view

PDH_doppler_mach-zender/PDH_doppler_mach-zender_eom_amont.py 3.91 KB
2ae5099ce   bmarechal   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  #!/usr/bin/python
  # -*- coding: utf-8 -*-
  
  '''Pound-Drever-Hall setup
     Mach-Zender with one photodiode
  
           ----- ---            ---
  ---------|EOM|-|\|------------|/|-----------(   )
   w_laser ----- ---            ---           cavity
                  |              |
                  |              |
                  | -----       ---
                  \-|AOM|-------|\|
                    -----       ---
                      ^          |
                      |          U
                      |          |
                      |          V
                      |-------->(X)
                      |          |   -----
                   (W_aom)       |---|LPF|--> eps_dop
                                 V   -----
              (W_pdh)---------->(X)
                                 |
                                 |
                                 V   eps_pdh
  
  
  
  '''
  
  from time import time
  tic = time()
  
  from sympy import *
  from sympy.simplify.fu import *
  
  init_printing()
  
  #constants
  E0, J0, J1, w_laser, w_pdh, w_aom, t = symbols('E0, J0, J1, omega_laser, Omega_pdh, Omega_aom, t', imaginary=False, real=True)
  v_x, d_x = symbols('v_x, delta_x', imaginary=False, real=True)
  c = symbols('c', imaginary=False, real=True)
  
  #laser and phase-mod laser
  E_laser = E0*exp(I*(w_laser*t))
  
  E_aom_eom =                                  \
  E0*(                                         \
    J0*exp(I*( ( w_laser+w_aom       )*t) )    \
  + J1*exp(I*( ( w_laser+w_aom+w_pdh )*t) )    \
  - J1*exp(I*( ( w_laser+w_aom-w_pdh )*t) ) )
  
  
  E_eom =                                \
  E0*(                                   \
    J0*exp(I*( ( w_laser       )*t ) )   \
  + J1*exp(I*( ( w_laser+w_pdh )*t ) )   \
  - J1*exp(I*( ( w_laser-w_pdh )*t ) ) )
  
  #approximation of F(w) near a resonance
  dnu, w_cav = symbols('delta_nu, omega_cav', imaginary=False, real=True)
  def F(phi):
      dw = phi.diff(t) - w_cav
      return -(I/pi)*(dw/dnu)
  
  #reflected phase-mod laser and dephased by doppler effect and by actuator
  dx = v_x*t + d_x
  E_ref =                                                 \
  E0*(                                                    \
     F( w_laser*t - w_laser*(dx)/(2*pi*c) )               \
      *J0*exp( I*( (w_laser      )*t - 2*w_laser*dx/c ) ) \
  + -1*J1*exp( I*( (w_laser+w_pdh)*t - 2*w_laser*dx/c ) ) \
  - -1*J1*exp( I*( (w_laser-w_pdh)*t - 2*w_laser*dx/c ) ) \
     )
  
  #optical mixer
  E_mz = sqrt(2)/2 * E_aom_eom + sqrt(2)/2 * E_ref
  
  #intensity of mixed wave
  I_mz = abs(E_mz)**2
  I_mz = expand(TR8(expand(expand_complex(I_mz))))
  
  
  #Q demodulation of I_mz at Omega_aom for doppler error signal obtention
  kphidop = symbols('k_phi_doppler', real=True)
  eps_dop = 2 * kphidop * I_mz * cos(w_aom*t-pi/2)
  eps_dop = expand(TR8(TR7(expand(eps_dop))))
  
  #Q demodulation of I_mich at Omega_pdh for doppler error signal obtention
  kphipdh = symbols('k_phi_pdh', real=True)
  eps_pdh = 2 * kphipdh * eps_dop * cos(w_pdh*t)
  eps_pdh = expand(TR8(TR7(expand(eps_pdh))))
  
  toc = time()
  print('Elapsed time : %fs'%(toc-tic))
  
  '''results
  
  ### EOM sur un bras
  
  eps_pdh =
  
  0
  
  eps_dop =
  
      2                 ⎛                  ω_laser⋅vₓ⎞    ⎛2⋅δₓ⋅ω_laser   2⋅ω_laser⋅t⋅vₓ⎞
    E₀ ⋅J₀ ⋅k_φ_doppler⋅⎜ω_laser - ω_cav - ──────────⎟⋅cos⎜──────────── + ──────────────⎟
                        ⎝                      c     ⎠    ⎝     c               c       ⎠
  - ─────────────────────────────────────────────────────────────────────────────────────
                                              π⋅δ_ν
  
        2   2                ⎛  δₓ⋅ω_laser     ω_laser⋅t⋅vₓ⎞
  + 2⋅E₀ ⋅J₁ ⋅k_φ_doppler⋅sin⎜2⋅────────── + 2⋅────────────⎟
                             ⎝      c               c      ⎠
  
  '''