Commit f27e91828c8845706a48e89f123fdd436906fe69
Committed by
GitHub
1 parent
9259d78054
Exists in
master
Add files via upload
Showing 2 changed files with 119 additions and 0 deletions Inline Diff
dat_ident.py
| File was created | 1 | # -*- coding: utf-8 -*- | ||
| 2 | """ | |||
| 3 | Created on Wed Mar 16 10:22:54 2016 | |||
| 4 | ||||
| 5 | @author: Baptiste Marechal | |||
| 6 | """ | |||
| 7 | ||||
| 8 | import csv, time, glob, datetime, os | |||
| 9 | import matplotlib.pyplot as plt | |||
| 10 | import matplotlib.dates as md | |||
| 11 | ||||
| 12 | #from scipy import signal | |||
| 13 | #from scipy.optimize import curve_fit | |||
| 14 | ||||
| 15 | tic = time.time() | |||
| 16 | ||||
| 17 | os.chdir('/home/user/sicav_data/Manip/2016/2016-03/') | |||
| 18 | ||||
| 19 | def getColumn(filename, column): | |||
| 20 | results = [] | |||
| 21 | for dat_file in sorted(glob.glob(filename)): | |||
| 22 | file_result = csv.reader(open(dat_file), delimiter='\t') | |||
| 23 | results = results + map(float,[result[column] for result in file_result]) | |||
| 24 | return results | |||
| 25 | ||||
| 26 | t = getColumn('*-lakeshore.dat', 0) | |||
| 27 | T1 = getColumn('*-lakeshore.dat', 2) | |||
| 28 | T2 = getColumn('*-lakeshore.dat', 3) | |||
| 29 | T3 = getColumn('*-lakeshore.dat', 4) | |||
| 30 | T4 = getColumn('*-lakeshore.dat', 5) | |||
| 31 | ||||
| 32 | """ | |||
| 33 | n = 400 | |||
| 34 | t = [t[n*i] for i in range(len(t)/n)] | |||
| 35 | T1 = [T1[n*i] for i in range(len(T1)/n)] | |||
| 36 | T2 = [T2[n*i] for i in range(len(T2)/n)] | |||
| 37 | T3 = [T3[n*i] for i in range(len(T3)/n)] | |||
| 38 | T4 = [T4[n*i] for i in range(len(T4)/n)] | |||
| 39 | ||||
| 40 | def func(U, a0, b1, b2, y0): | |||
| 41 | sys = signal.lti([a0],[b2, b1, 1]) | |||
| 42 | y = sys.output(U, t, y0) | |||
| 43 | return y[1] | |||
| 44 | ||||
| 45 | print('Fitting...') | |||
| 46 | popt, cov = curve_fit(func, T1, T4) | |||
| 47 | print(popt) | |||
| 48 | Yfit = func(T1, *popt) | |||
| 49 | """ | |||
| 50 | timetamps = [datetime.datetime.fromtimestamp(ti) for ti in t] | |||
| 51 | datenums=md.date2num(timetamps) | |||
| 52 | ||||
| 53 | plt.subplots_adjust(bottom=0.35) | |||
| 54 | plt.xticks(rotation=90) | |||
| 55 | ax=plt.gca() | |||
| 56 | xfmt = md.DateFormatter('%Y-%m-%d %H:%M:%S') |
first_order_ident.py
| File was created | 1 | # -*- coding: utf-8 -*- | ||
| 2 | """ | |||
| 3 | Created on Fri Mar 11 11:04:35 2016 | |||
| 4 | ||||
| 5 | @author: Baptiste Marechal | |||
| 6 | """ | |||
| 7 | ||||
| 8 | from scipy import signal, linspace, pi, randn, ones | |||
| 9 | from scipy.optimize import curve_fit | |||
| 10 | import matplotlib.pyplot as plt | |||
| 11 | import time | |||
| 12 | ||||
| 13 | tic = time.time() | |||
| 14 | ||||
| 15 | '''function to optimize''' | |||
| 16 | def func(u, K, tau, y0): | |||
| 17 | sys = signal.lti(K, [tau, 1]) | |||
| 18 | y = sys.output(u, t, y0) | |||
| 19 | return y[1] | |||
| 20 | ||||
| 21 | '''input square signal''' | |||
| 22 | global t | |||
| 23 | t = linspace(0, 20, 1000) | |||
| 24 | Umes = -0.5*(signal.square(2*pi*0.1*t)+ones(len(t)))+ones(len(t))+randn(len(t))/50 | |||
| 25 | ||||
| 26 | '''noisy output signal''' | |||
| 27 | p = [1, 1, 0] | |||
| 28 | Ymes = func(Umes, *p)+randn(len(Umes))/50 | |||
| 29 | ||||
| 30 | '''input and output signals plot''' | |||
| 31 | plt.plot(t, Umes, label = 'Umes') | |||
| 32 | plt.plot(t, Ymes, label = 'Ymes') | |||
| 33 | ||||
| 34 | ||||
| 35 | '''optimization with non-linear least squares method''' | |||
| 36 | popt, cov = curve_fit(func, Umes, Ymes) | |||
| 37 | print(p) |