Blame view
fit_waist.py
1.59 KB
d0c0cc957 Add files via upload |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from scipy.optimize import curve_fit import csv, numpy, glob from scipy.special import erf import matplotlib.pyplot as plt '''power function to optimize''' def P(x, Po, Pmax, xo, w): return Po+0.5*Pmax*(1.-erf(2.**0.5*(x-xo)/w)) '''load and fit beam section''' files = glob.glob('*.dat') files.sort() data_waist = [] plt.close() fig, p = plt.subplots(2, 1) for f in files: with open(f, 'r') as dest_f: raw = csv.reader(dest_f, delimiter = '\t', quotechar = '"') data = [value for value in raw] data = numpy.asarray(data, dtype = float) xmes = data[:,0] Pmes = data[:,1] '''optimization with non-linear least squares method''' Ppopt, Pcov = curve_fit(P, xmes, Pmes) data_waist.append([int(f[-7:-4]), Ppopt[3]]) '''plot''' p[0].plot(xmes, Pmes, 'o') p[0].plot(numpy.linspace(xmes[0], xmes[-1], 100), P(numpy.linspace(xmes[0], xmes[-1], 100), *Ppopt)) p[0].grid() '''return waist(z) table''' data_waist = numpy.asarray(data_waist, dtype = float) print(data_waist) '''waist function to optimize''' def W(z, w0, z0): return w0*(1.+((z-z0)*1542e-6/(numpy.pi*w0**2))**2)**0.5 popt, cov = curve_fit(W, data_waist[:,0], data_waist[:,1]) print(popt[0], popt[1]) p[1].plot(data_waist[:,0], data_waist[:,1], 'bo') p[1].plot(data_waist[:,0], -data_waist[:,1], 'bo') p[1].plot(numpy.linspace(data_waist[0,0], data_waist[-1,0], 100), W(numpy.linspace(data_waist[0,0], data_waist[-1,0], 100), *popt), 'r') p[1].plot(numpy.linspace(data_waist[0,0], data_waist[-1,0], 100), -W(numpy.linspace(data_waist[0,0], data_waist[-1,0], 100), *popt), 'r') p[1].grid() plt.show() |