Commit b197c3fdf011f9972e68675ac4ca59e0cd09ad67
0 parents
Exists in
master
first commit
Showing 14 changed files with 2060 additions and 0 deletions Inline Diff
allan.m
File was created | 1 | function [retval, s, errorb, tau] = allan(data,tau,name,verbose) | ||
2 | % ALLAN Compute the Allan deviation for a set of time-domain frequency data | |||
3 | % [RETVAL, S, ERRORB, TAU] = ALLAN(DATA,TAU,NAME,VERBOSE) | |||
4 | % | |||
5 | % Inputs: | |||
6 | % DATA should be a structure and have the following fields: | |||
7 | % DATA.freq or DATA.phase | |||
8 | % A vector of fractional frequency measurements (df/f) in | |||
9 | % DATA.freq *or* phase offset data (seconds) in DATA.phase . | |||
10 | % If frequency data is not present, it will be generated by | |||
11 | % differentiating the phase data. | |||
12 | % If both fields are present, then DATA.freq will be used. | |||
13 | % Note: for general-purpose calculations of Allan deviation, | |||
14 | % (i.e. a two-sample variance) use DATA.freq . | |||
15 | % | |||
16 | % DATA.rate or DATA.time | |||
17 | % The sampling rate in Hertz (DATA.rate) or a vector of | |||
18 | % timestamps for each measurement in seconds (DATA.time). | |||
19 | % DATA.rate is used if both fields are present. | |||
20 | % If DATA.rate == 0, then the timestamps are used. | |||
21 | % | |||
22 | % DATA.units (optional) | |||
23 | % The units for the data. If present, the string DATA.units | |||
24 | % is added to the plot y-axis label. | |||
25 | % | |||
26 | % TAU is an array of tau values for computing Allan deviation. | |||
27 | % TAU values must be divisible by 1/DATA.rate (data points cannot be | |||
28 | % grouped in fractional quantities!) and invalid values are ignored. | |||
29 | % Leave empty to use default values. | |||
30 | % NAME is an optional label that is added to the plot titles. | |||
31 | % VERBOSE sets the level of status messages: | |||
32 | % 0 = silent & no data plots; | |||
33 | % 1 = status messages & minimum plots; | |||
34 | % 2 = all messages and plots (default) | |||
35 | % | |||
36 | % Outputs: | |||
37 | % RETVAL is the array of Allan deviation values at each TAU. | |||
38 | % S is an optional output of other statistical measures of the data (mean, std, etc). | |||
39 | % ERRORB is an optional output containing the error estimates for a 1-sigma | |||
40 | % confidence interval. These values are shown on the figure for each point. | |||
41 | % TAU is an optional output containing the array of tau values used in the | |||
42 | % calculation (which may be a truncated subset of the input or default values). | |||
43 | % | |||
44 | % Example: | |||
45 | % | |||
46 | % To compute the Allan deviation for the data in the variable "lt": | |||
47 | % >> lt | |||
48 | % lt = | |||
49 | % freq: [1x86400 double] | |||
50 | % rate: 0.5 | |||
51 | % | |||
52 | % Use: | |||
53 | % | |||
54 | % >> ad = allan(lt,[2 10 100],'lt data',1); | |||
55 | % | |||
56 | % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | |||
57 | % 1-sigma confidence intervals will be indicated by vertical lines at each point. | |||
58 | % You can also use the default settings, which are usually a good starting point: | |||
59 | % | |||
60 | % >> ad = allan(lt); | |||
61 | % | |||
62 | % | |||
63 | % Notes: | |||
64 | % This function calculates the standard Allan deviation (ADEV), *not* the | |||
65 | % overlapping ADEV. Use "allan_overlap.m" for overlapping ADEV. | |||
66 | % The calculation is performed using fractional frequency data. If only | |||
67 | % phase data is provided, frequency data is generated by differentiating | |||
68 | % the phase data. | |||
69 | % No pre-processing of the data is performed, except to remove any | |||
70 | % initial offset (i.e., starting gap) in the time record. | |||
71 | % For rate-based data, ADEV is computed only for tau values greater than the | |||
72 | % minimum time between samples and less than the half the total time. For | |||
73 | % time-stamped data, only tau values greater than the maximum gap between | |||
74 | % samples and less than half the total time are used. | |||
75 | % The calculation for fixed sample rate data is *much* faster than for | |||
76 | % time-stamp data. You may wish to run the rate-based calculation first, | |||
77 | % then compare with time-stamp-based. Often the differences are insignificant. | |||
78 | % To show the "tau bins" (y_k samples) on the data plot, set the variable | |||
79 | % TAUBIN to 1 (search for "#TAUBIN"). | |||
80 | % You can choose between loglog and semilog plotting of results by | |||
81 | % commenting in/out the appropriate line. Search for "#PLOTLOG". | |||
82 | % I recommend installing "dsplot.m", which improves the performance of | |||
83 | % plotting large data sets. Download from File Exchange, File ID: #15850. | |||
84 | % allan.m will use dsplot.m if it is present on your MATLAB path. | |||
85 | % This function has been validated using the test data from NBS Monograph | |||
86 | % 140, the 1000-point test data set given by Riley [1], and the example data | |||
87 | % given in IEEE standard 1139-1999, Annex C. | |||
88 | % The author welcomes other validation results, see contact info below. | |||
89 | % | |||
90 | % For more information, see: | |||
91 | % [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | |||
92 | % Available on the web: | |||
93 | % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | |||
94 | % | |||
95 | % | |||
96 | % M.A. Hopcroft | |||
97 | % mhopeng at gmail dot com | |||
98 | % | |||
99 | % I welcome your comments and feedback! | |||
100 | % | |||
101 | % MH Mar2014 | |||
102 | % v2.24 fix bug related to generating freq data from phase with timestamps | |||
103 | % (thanks to S. David-Grignot for finding the bug) | |||
104 | % MH Oct2010 | |||
105 | % v2.22 tau truncation to integer groups; tau sort | |||
106 | % plotting bugfix | |||
107 | % v2.20 sychronize updates across allan, allan_overlap, allan_modified | |||
108 | % v2.16 add TAU as output, fixed unusual error with dsplot v1.1 | |||
109 | % v2.14 update plotting behaviour, default tau values | |||
110 | % | |||
111 | ||||
112 | versionstr = 'allan v2.24'; | |||
113 | ||||
114 | % MH Jun2010 | |||
115 | % v2.12 bugfix for rate data row/col orientation | |||
116 | % add DATA.units for plotting | |||
117 | % use dsplot.m for plotting | |||
118 | % | |||
119 | % MH MAR2010 | |||
120 | % v2.1 minor interface and bugfixes | |||
121 | % update data consistency check | |||
122 | % | |||
123 | % MH FEB2010 | |||
124 | % v2.0 Consistent code behaviour for all "allan_x.m" functions: | |||
125 | % accept phase data | |||
126 | % verbose levels | |||
127 | % | |||
128 | % | |||
129 | % MH JAN2010 | |||
130 | % v1.84 code cleanup | |||
131 | % v1.82 typos in comments and code cleanup | |||
132 | % tau bin plotting changed for performance improvement | |||
133 | % v1.8 Performance improvements: | |||
134 | % vectorize code for rate data | |||
135 | % logical indexing for irregular rate data | |||
136 | % MH APR2008 | |||
137 | % v1.62 loglog plot option | |||
138 | % v1.61 improve error handling, plotting | |||
139 | % fix bug in regular data calc for high-rate data | |||
140 | % fix bug in timestamp data calc for large starting gap | |||
141 | % (thanks to C. B. Ruiz for identifying these bugs) | |||
142 | % uses timestamps for DATA.rate=0 | |||
143 | % progress indicator for large timestamp data processing | |||
144 | % MH JUN2007 | |||
145 | % v1.54 Improve data plotting and optional bin plotting | |||
146 | % MH FEB2007 | |||
147 | % v1.5 use difference from median for plotting | |||
148 | % added MAD calculation for outlier detection | |||
149 | % MH JAN2007 | |||
150 | % v1.48 plotting typos fixes | |||
151 | % MH DEC2006 | |||
152 | % v1.46 hack to plot error bars | |||
153 | % v1.44 further validation (Riley 1000-pt) | |||
154 | % plot mean and std | |||
155 | % MH NOV2006 | |||
156 | % v1.42 typo fix comments | |||
157 | % v1.4 fix irregular rate algorithm | |||
158 | % irregular algorithm rejects tau less than max gap in time data | |||
159 | % validate both algorithms using test data from NBS Monograph 140 | |||
160 | % v1.3 fix time calc if data.time not present | |||
161 | % add error bars (not possible due to bug in MATLAB R14SP3) | |||
162 | % remove offset calculation | |||
163 | % v1.24 improve feedback | |||
164 | % MH SEP2006 | |||
165 | % v1.22 updated comments | |||
166 | % v1.2 errors and warnings | |||
167 | % v1.1 handle irregular interval data | |||
168 | %#ok<*AGROW> | |||
169 | ||||
170 | % defaults | |||
171 | if nargin < 4, verbose=2; end | |||
172 | if nargin < 3, name=''; end | |||
173 | if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | |||
174 | ||||
175 | % plot "tau bins"? #TAUBIN | |||
176 | TAUBIN = 0; % set 0 or 1 % WARNING: this has a significant impact on performance | |||
177 | ||||
178 | % Formatting for plots | |||
179 | FontName = 'Arial'; | |||
180 | FontSize = 14; | |||
181 | plotlinewidth=2; | |||
182 | ||||
183 | if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end | |||
184 | ||||
185 | %% Data consistency checks | |||
186 | if ~(isfield(data,'phase') || isfield(data,'freq')) | |||
187 | error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |||
188 | end | |||
189 | if isfield(data,'time') | |||
190 | if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |||
191 | if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |||
192 | error('The time and freq vectors are not the same length. See help for details. [con2]'); | |||
193 | else | |||
194 | error('The time and phase vectors are not the same length. See help for details. [con1]'); | |||
195 | end | |||
196 | end | |||
197 | if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |||
198 | error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |||
199 | end | |||
200 | if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |||
201 | error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |||
202 | end | |||
203 | if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |||
204 | error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |||
205 | end | |||
206 | end | |||
207 | ||||
208 | % sort tau vector | |||
209 | tau=sort(tau); | |||
210 | ||||
211 | ||||
212 | %% Basic statistical tests on the data set | |||
213 | if ~isfield(data,'freq') | |||
214 | if isfield(data,'rate') && data.rate ~= 0 | |||
215 | data.freq=diff(data.phase).*data.rate; | |||
216 | elseif isfield(data,'time') | |||
217 | data.freq=diff(data.phase)./diff(data.time); | |||
218 | end | |||
219 | if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |||
220 | data.time(1)=[]; % make time stamps correspond to freq data | |||
221 | end | |||
222 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | |||
223 | ||||
224 | s.numpoints=length(data.freq); | |||
225 | s.max=max(data.freq); | |||
226 | s.min=min(data.freq); | |||
227 | s.mean=mean(data.freq); | |||
228 | s.median=median(data.freq); | |||
229 | if isfield(data,'time') | |||
230 | if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |||
231 | s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |||
232 | elseif isfield(data,'rate') && data.rate ~= 0; | |||
233 | s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |||
234 | else | |||
235 | error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | |||
236 | end | |||
237 | s.std=std(data.freq); | |||
238 | ||||
239 | if verbose >= 2 | |||
240 | fprintf(1,'allan: input data statistics:\n'); | |||
241 | disp(s); | |||
242 | end | |||
243 | ||||
244 | ||||
245 | % center at median for plotting | |||
246 | medianfreq=data.freq-s.median; | |||
247 | sm=[]; sme=[]; | |||
248 | ||||
249 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | |||
250 | s.MAD = median(abs(medianfreq)/0.6745); | |||
251 | if verbose >= 2 | |||
252 | fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | |||
253 | end | |||
254 | if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) | |||
255 | fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |||
256 | end | |||
257 | ||||
258 | ||||
259 | %%%% | |||
260 | % There are two cases, either using timestamps or fixed sample rate: | |||
261 | ||||
262 | %% Fixed Sample Rate Data | |||
263 | % If there is a regular interval between measurements, calculation is much | |||
264 | % easier/faster | |||
265 | if isfield(data,'rate') && data.rate > 0 % if data rate was given | |||
266 | if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | |||
267 | ||||
268 | % string for plot title | |||
269 | name=[name ' (' num2str(data.rate) ' Hz)']; | |||
270 | ||||
271 | % what is the time interval between data points? | |||
272 | tmstep = 1/data.rate; | |||
273 | ||||
274 | % Is there time data? Just for curiosity/plotting, does not impact calculation | |||
275 | if isfield(data,'time') | |||
276 | % adjust time data to remove any starting gap; first time step | |||
277 | % should not be zero for comparison with freq data | |||
278 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |||
279 | if verbose >= 2 | |||
280 | fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | |||
281 | if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |||
282 | fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |||
283 | end | |||
284 | end | |||
285 | else | |||
286 | % create time axis data using rate (for plotting only) | |||
287 | dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | |||
288 | end | |||
289 | ||||
290 | % check the range of tau values and truncate if necessary | |||
291 | % find halfway point of time record | |||
292 | halftime = round(tmstep*length(data.freq)/2); | |||
293 | % truncate tau to appropriate values | |||
294 | tau = tau(tau >= tmstep & tau <= halftime); | |||
295 | if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |||
296 | ||||
297 | % save the freq data for the loop | |||
298 | dfreq=data.freq; | |||
299 | % find the number of data points in each tau group | |||
300 | m = data.rate.*tau; | |||
301 | % only integer values allowed (no fractional groups of points) | |||
302 | %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |||
303 | tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |||
304 | %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |||
305 | m = m(m==round(m)); | |||
306 | %m=round(m); | |||
307 | ||||
308 | if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | |||
309 | ||||
310 | % calculate the Allan deviation for each value of tau | |||
311 | k=0; tic; | |||
312 | for i = tau | |||
313 | if verbose >= 2, fprintf(1,'%g ',i); end | |||
314 | k=k+1; | |||
315 | ||||
316 | % truncate frequency set to an even multiple of this tau value | |||
317 | freq=dfreq(1:end-rem(length(dfreq),m(k))); | |||
318 | % group the data into tau-length groups or bins | |||
319 | f = reshape(freq,m(k),[]); % Vectorize! | |||
320 | % find average in each "tau group", y_k (each colummn of f) | |||
321 | fa=mean(f,1); | |||
322 | % first finite difference | |||
323 | fd=diff(fa); | |||
324 | % calculate two-sample variance for this tau | |||
325 | M=length(fa); | |||
326 | sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |||
327 | ||||
328 | % estimate error bars | |||
329 | sme(k)=sm(k)/sqrt(M+1); | |||
330 | ||||
331 | if TAUBIN == 1 | |||
332 | % save the binning points for plotting | |||
333 | fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | |||
334 | end | |||
335 | ||||
336 | end % repeat for each value of tau | |||
337 | ||||
338 | if verbose >= 2, fprintf(1,'\n'); end | |||
339 | calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |||
340 | ||||
341 | ||||
342 | ||||
343 | %% Irregular data (timestamp) | |||
344 | elseif isfield(data,'time') | |||
345 | % the interval between measurements is irregular | |||
346 | % so we must group the data by time | |||
347 | if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | |||
348 | ||||
349 | % string for plot title | |||
350 | name=[name ' (timestamp)']; | |||
351 | ||||
352 | % adjust time to remove any initial offset or zero | |||
353 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |||
354 | %dtime=data.time; | |||
355 | % where is the maximum gap in time record? | |||
356 | gap_pos=find(diff(dtime)==max(diff(dtime))); | |||
357 | % what is average data spacing? | |||
358 | avg_gap = mean(diff(dtime)); | |||
359 | ||||
360 | if verbose >= 2 | |||
361 | fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |||
362 | fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |||
363 | fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |||
364 | fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |||
365 | pause; | |||
366 | end | |||
367 | ||||
368 | if verbose >= 1 | |||
369 | fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | |||
370 | fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |||
371 | if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |||
372 | fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |||
373 | end | |||
374 | if max(diff(dtime)) > 5*avg_gap | |||
375 | fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |||
376 | end | |||
377 | end | |||
378 | ||||
379 | ||||
380 | % find halfway point | |||
381 | halftime = fix(dtime(end)/2); | |||
382 | % truncate tau to appropriate values | |||
383 | tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |||
384 | if isempty(tau) | |||
385 | error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |||
386 | end | |||
387 | ||||
388 | % save the freq data for the loop | |||
389 | dfreq=data.freq; | |||
390 | dtime=dtime(1:length(dfreq)); | |||
391 | ||||
392 | if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | |||
393 | ||||
394 | k=0; tic; | |||
395 | for i = tau | |||
396 | if verbose >= 2, fprintf(1,'%d ',i); end | |||
397 | ||||
398 | k=k+1; fa=[]; %f=[]; | |||
399 | km=0; | |||
400 | ||||
401 | % truncate data set to an even multiple of this tau value | |||
402 | freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | |||
403 | time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | |||
404 | %freq=dfreq; | |||
405 | %time=dtime; | |||
406 | ||||
407 | % break up the data into groups of tau length in sec | |||
408 | while i*km < time(end) | |||
409 | km=km+1; | |||
410 | ||||
411 | % progress bar | |||
412 | if verbose >= 2 | |||
413 | if rem(km,100)==0, fprintf(1,'.'); end | |||
414 | if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |||
415 | end | |||
416 | ||||
417 | f = freq(i*(km-1) < time & time <= i*km); | |||
418 | f = f(~isnan(f)); % make sure values are valid | |||
419 | ||||
420 | if ~isempty(f) | |||
421 | fa(km)=mean(f); | |||
422 | else | |||
423 | fa(km)=0; | |||
424 | end | |||
425 | ||||
426 | if TAUBIN == 1 % WARNING: this has a significant impact on performance | |||
427 | % save the binning points for plotting | |||
428 | %if find(time <= i*km) > 0 | |||
429 | fs(k,km)=max(time(time <= i*km)); | |||
430 | %else | |||
431 | if isempty(fs(k,km)) | |||
432 | fs(k,km)=0; | |||
433 | end | |||
434 | fval{k}=fa; | |||
435 | end % save tau bin plot points | |||
436 | ||||
437 | end | |||
438 | ||||
439 | if verbose >= 2, fprintf(1,'\n'); end | |||
440 | ||||
441 | % first finite difference of the averaged results | |||
442 | fd=diff(fa); | |||
443 | % calculate Allan deviation for this tau | |||
444 | M=length(fa); | |||
445 | sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |||
446 | ||||
447 | % estimate error bars | |||
448 | sme(k)=sm(k)/sqrt(M+1); | |||
449 | ||||
450 | ||||
451 | end | |||
452 | ||||
453 | if verbose == 2, fprintf(1,'\n'); end | |||
454 | calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |||
455 | ||||
456 | ||||
457 | else | |||
458 | error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |||
459 | end | |||
460 | ||||
461 | ||||
462 | %%%%%%%% | |||
463 | %% Plotting | |||
464 | ||||
465 | if verbose >= 2 % show all data | |||
466 | ||||
467 | % plot the frequency data, centered on median | |||
468 | if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |||
469 | try | |||
470 | % dsplot makes a new figure | |||
471 | hd=dsplot(dtime,medianfreq); | |||
472 | catch ME | |||
473 | figure; | |||
474 | if length(dtime) ~= length(medianfreq) | |||
475 | fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | |||
476 | end | |||
477 | hd=plot(dtime,medianfreq); | |||
478 | if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |||
479 | if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |||
480 | end | |||
481 | set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |||
482 | hold on; | |||
483 | ||||
484 | % show center (0) | |||
485 | plot(xlim,[0 0],':k'); | |||
486 | % show 5x Median Absolute Deviation (MAD) values | |||
487 | hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | |||
488 | plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | |||
489 | % show linear fit line | |||
490 | hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |||
491 | title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |||
492 | %set(get(gca,'Title'),'Interpreter','none'); | |||
493 | xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |||
494 | if isfield(data,'units') | |||
495 | ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |||
496 | else | |||
497 | ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |||
498 | end | |||
499 | set(gca,'FontSize',FontSize,'FontName',FontName); |
allan_modified.m
File was created | 1 | function [retval, s, errorb, tau] = allan_modified(data,tau,name,verbose) | ||
2 | % ALLAN_MODIFIED Compute the modified Allan deviation for a set of | |||
3 | % time-domain frequency data | |||
4 | % [RETVAL, S, ERRORB, TAU] = ALLAN_MODIFIED(DATA,TAU,NAME,VERBOSE) | |||
5 | % | |||
6 | % Inputs: | |||
7 | % DATA should be a struct and have the following fields: | |||
8 | % DATA.freq or DATA.phase | |||
9 | % A vector of fractional frequency measurements (df/f) in | |||
10 | % DATA.freq *or* phase offset data (seconds) in DATA.phase | |||
11 | % If phase data is not present, it will be generated by | |||
12 | % integrating the fractional frequency data. | |||
13 | % If both fields are present, then DATA.phase will be used. | |||
14 | % | |||
15 | % DATA.rate or DATA.time | |||
16 | % The sampling rate in Hertz (DATA.rate) or a vector of | |||
17 | % timestamps for each measurement in seconds (DATA.time). | |||
18 | % DATA.rate is used if both fields are present. | |||
19 | % If DATA.rate == 0, then the timestamps are used. | |||
20 | % | |||
21 | % TAU is an array of tau values for computing Allan deviation. | |||
22 | % TAU values must be divisible by 1/DATA.rate (data points cannot be | |||
23 | % grouped in fractional quantities!). Invalid values are ignored. | |||
24 | % NAME is an optional label that is added to the plot titles. | |||
25 | % VERBOSE sets the level of status messages: | |||
26 | % 0 = silent & no data plots; 1 = status messages; 2 = all messages | |||
27 | % | |||
28 | % Outputs: | |||
29 | % RETVAL is the array of modified Allan deviation values at each TAU. | |||
30 | % S is an optional output of other statistical measures of the data (mean, std, etc). | |||
31 | % ERRORB is an optional output containing the error estimates for a | |||
32 | % 1-sigma confidence interval. These values are shown on the figure for each point. | |||
33 | % TAU is an optional output containing the array of tau values used in the | |||
34 | % calculation (which may be a truncated subset of the input or default values). | |||
35 | % | |||
36 | % Example: | |||
37 | % | |||
38 | % To compute the modified Allan deviation for the data in the variable "lt": | |||
39 | % >> lt | |||
40 | % lt = | |||
41 | % freq: [1x86400 double] | |||
42 | % rate: 0.5 | |||
43 | % | |||
44 | % Use: | |||
45 | % | |||
46 | % >> adm = allan_modified(lt,[2 10 100],'lt data',1); | |||
47 | % | |||
48 | % The modified Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | |||
49 | % 1-sigma confidence intervals will be indicated by vertical lines at each point. | |||
50 | % You can also use the default settings, which are usually a good starting point: | |||
51 | % | |||
52 | % >> adm = allan_modified(lt); | |||
53 | % | |||
54 | % | |||
55 | % Notes: | |||
56 | % This function calculates the modifed Allan deviation (MDEV). | |||
57 | % The calculation is performed using phase data. If only frequency data is | |||
58 | % provided, phase data is generated by integrating the frequency data. | |||
59 | % No pre-processing of the data is performed. | |||
60 | % For rate-based data, MDEV is computed only for tau values greater than the | |||
61 | % minimum time between samples and less than the half the total time. For | |||
62 | % time-stamped data, only tau values greater than the maximum gap between | |||
63 | % samples and less than half the total time are used. | |||
64 | % The calculation for fixed sample rate data is *much* faster than for | |||
65 | % time-stamp data. You may wish to run the rate-based calculation first, | |||
66 | % then compare with time-stamp-based. Often the differences are insignificant. | |||
67 | % When phase data is generated by integrating time-stamped frequency data, | |||
68 | % the final data point is dropped, because there is no timestamp for it. | |||
69 | % This will create a [usually small] difference between the results from | |||
70 | % analyzing the same data set with timestamp data and analyzing with a | |||
71 | % fixed sample rate. See note in the code near line 350. | |||
72 | % You can choose between loglog and semilog plotting of results by | |||
73 | % commenting in/out the appropriate line. Search for "#PLOTLOG". | |||
74 | % This function has been validated using the test data from NBS Monograph | |||
75 | % 140, the 1000-point test data set given by Riley [1], and the example data | |||
76 | % given in IEEE standard 1139-1999, Annex C. | |||
77 | % The author welcomes other validation results, see contact info below. | |||
78 | % | |||
79 | % For more information, see: | |||
80 | % [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | |||
81 | % Available on the web: | |||
82 | % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | |||
83 | % | |||
84 | % | |||
85 | % M.A. Hopcroft | |||
86 | % mhopeng at gmail dot com | |||
87 | % | |||
88 | % I welcome your comments and feedback! | |||
89 | % | |||
90 | % MH Mar2014 | |||
91 | % v1.24 fix bug related to generating freq data from phase with timestamps | |||
92 | % (thanks to S. David-Grignot for finding the bug) | |||
93 | % MH Oct2010 | |||
94 | % v1.22 tau truncation to integer groups; tau sort | |||
95 | % plotting bugfix | |||
96 | % v1.20 update to match allan.m (dsplot.m, columns) | |||
97 | % discard tau values with timestamp irregularities | |||
98 | % | |||
99 | ||||
100 | versionstr = 'allan_modified v1.24'; | |||
101 | ||||
102 | % MH MAR2010 | |||
103 | % v1.1 bugfixes for irregular sample rates | |||
104 | % update consistency check | |||
105 | % | |||
106 | % MH FEB2010 | |||
107 | % v1.0 based on allan_overlap v2.0 | |||
108 | % | |||
109 | ||||
110 | %#ok<*AGROW> | |||
111 | ||||
112 | ||||
113 | % defaults | |||
114 | if nargin < 4, verbose = 2; end | |||
115 | if nargin < 3, name=''; end | |||
116 | if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | |||
117 | if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v1.1 | |||
118 | ||||
119 | % Formatting for plots | |||
120 | FontName = 'Arial'; | |||
121 | FontSize = 14; | |||
122 | plotlinewidth=2; | |||
123 | ||||
124 | if verbose >= 1, fprintf(1,'allan_modified: %s\n\n',versionstr); end | |||
125 | ||||
126 | %% Data consistency checks | |||
127 | if ~(isfield(data,'phase') || isfield(data,'freq')) | |||
128 | error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |||
129 | end | |||
130 | if isfield(data,'time') | |||
131 | if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |||
132 | if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |||
133 | error('The time and freq vectors are not the same length. See help for details. [con2]'); | |||
134 | else | |||
135 | error('The time and phase vectors are not the same length. See help for details. [con1]'); | |||
136 | end | |||
137 | end | |||
138 | if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |||
139 | error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |||
140 | end | |||
141 | if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |||
142 | error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |||
143 | end | |||
144 | if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |||
145 | error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |||
146 | end | |||
147 | end | |||
148 | ||||
149 | % sort tau vector | |||
150 | tau=sort(tau); | |||
151 | ||||
152 | ||||
153 | %% Basic statistical tests on the data set | |||
154 | if ~isfield(data,'freq') | |||
155 | if isfield(data,'rate') && data.rate ~= 0 | |||
156 | data.freq=diff(data.phase).*data.rate; | |||
157 | elseif isfield(data,'time') | |||
158 | data.freq=diff(data.phase)./diff(data.time); | |||
159 | end | |||
160 | if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |||
161 | end | |||
162 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | |||
163 | ||||
164 | s.numpoints=length(data.freq); | |||
165 | s.max=max(data.freq); | |||
166 | s.min=min(data.freq); | |||
167 | s.mean=mean(data.freq); | |||
168 | s.median=median(data.freq); | |||
169 | if isfield(data,'time') | |||
170 | if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |||
171 | s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |||
172 | elseif isfield(data,'rate') && data.rate ~= 0; | |||
173 | s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |||
174 | else | |||
175 | error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]'); | |||
176 | end | |||
177 | s.std=std(data.freq); | |||
178 | ||||
179 | if verbose >= 2 | |||
180 | fprintf(1,'allan_modified: fractional frequency data statistics:\n'); | |||
181 | disp(s); | |||
182 | end | |||
183 | ||||
184 | % scale to median for plotting | |||
185 | medianfreq=data.freq-s.median; | |||
186 | sm=[]; sme=[]; | |||
187 | ||||
188 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | |||
189 | MAD = median(abs(medianfreq)/0.6745); | |||
190 | if verbose >= 1 && any(abs(medianfreq) > 5*MAD) | |||
191 | fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |||
192 | end | |||
193 | ||||
194 | %%%% | |||
195 | % There are two cases, either using timestamps or rate: | |||
196 | ||||
197 | %% Fixed Sample Rate Data | |||
198 | % If there is a regular interval between measurements, calculation is much | |||
199 | % easier/faster | |||
200 | if isfield(data,'rate') && data.rate > 0 % if data rate was given | |||
201 | if verbose >= 1 | |||
202 | fprintf(1, 'allan_modified: regular data '); | |||
203 | if isfield(data,'freq') | |||
204 | fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | |||
205 | elseif isfield(data,'phase') | |||
206 | fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | |||
207 | else | |||
208 | error('\n phase or freq data missing [err10]'); | |||
209 | end | |||
210 | end | |||
211 | ||||
212 | % string for plot title | |||
213 | name=[name ' (' num2str(data.rate) ' Hz)']; | |||
214 | ||||
215 | % what is the time interval between data points? | |||
216 | tmstep = 1/data.rate; | |||
217 | ||||
218 | % Is there time data? Just for curiosity/plotting, does not impact calculation | |||
219 | if isfield(data,'time') | |||
220 | % adjust time data to remove any starting gap; first time step | |||
221 | % should not be zero for comparison with freq data | |||
222 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |||
223 | dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1) | |||
224 | if verbose >= 2 | |||
225 | fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end)); | |||
226 | if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |||
227 | fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |||
228 | end | |||
229 | end | |||
230 | else | |||
231 | % create time axis data using rate (for plotting only) | |||
232 | dtime=(tmstep:tmstep:length(data.freq)*tmstep); | |||
233 | end | |||
234 | ||||
235 | ||||
236 | % is phase data present? If not, generate it | |||
237 | if ~isfield(data,'phase') | |||
238 | nfreq=data.freq-s.mean; | |||
239 | dphase=zeros(1,length(nfreq)+1); | |||
240 | dphase(2:end) = cumsum(nfreq).*tmstep; | |||
241 | if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |||
242 | else | |||
243 | dphase=data.phase; | |||
244 | end | |||
245 | ||||
246 | ||||
247 | % check the range of tau values and truncate if necessary | |||
248 | % find halfway point of time record | |||
249 | halftime = round(tmstep*length(data.freq)/2); | |||
250 | % truncate tau to appropriate values | |||
251 | tau = tau(tau >= tmstep & tau <= halftime); | |||
252 | if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |||
253 | ||||
254 | % find the number of data points in each tau group | |||
255 | % number of samples | |||
256 | N=length(dphase); | |||
257 | m = data.rate.*tau; | |||
258 | % only integer values allowed (no fractional groups of points) | |||
259 | %tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1) | |||
260 | tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |||
261 | %m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22 | |||
262 | m = m(m==round(m)); | |||
263 | %m=round(m); | |||
264 | ||||
265 | if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end | |||
266 | ||||
267 | ||||
268 | % calculate the modified Allan deviation for each value of tau | |||
269 | k=0; tic; | |||
270 | for i = tau | |||
271 | k=k+1; | |||
272 | pa=[]; | |||
273 | if verbose >= 2, fprintf(1,'%d ',i); end | |||
274 | ||||
275 | mphase = dphase; | |||
276 | ||||
277 | % calculate overlapping "phase averages" (x_k) | |||
278 | for p=1:m(k) | |||
279 | ||||
280 | % truncate frequency set length to an even multiple of this tau value | |||
281 | mphase=mphase(1:end-rem(length(mphase),m(k))); | |||
282 | % group phase values | |||
283 | mp=reshape(mphase,m(k),[]); | |||
284 | % find average in each "tau group" (each column of mp) | |||
285 | pa(p,:)=mean(mp,1); | |||
286 | % shift data vector by -1 and repeat | |||
287 | mphase=circshift(dphase,(size(dphase)>1)*-p); | |||
288 | ||||
289 | end | |||
290 | ||||
291 | % create "modified" y_k freq values | |||
292 | mfreq=diff(pa,1,2)./i; | |||
293 | mfreq=reshape(mfreq,1,[]); | |||
294 | ||||
295 | % calculate modified frequency differences | |||
296 | mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | |||
297 | mfreqd=diff(mfreqd,1,2); | |||
298 | mfreqd=reshape(mfreqd,1,[]); | |||
299 | ||||
300 | ||||
301 | % calculate two-sample variance for this tau | |||
302 | sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | |||
303 | ||||
304 | % estimate error bars | |||
305 | sme(k)=sm(k)/sqrt(N-3*m(k)+1); | |||
306 | ||||
307 | ||||
308 | end % repeat for each value of tau | |||
309 | ||||
310 | if verbose >= 2, fprintf(1,'\n'); end | |||
311 | calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | |||
312 | ||||
313 | ||||
314 | ||||
315 | %% Irregular data (timestamp) | |||
316 | elseif isfield(data,'time') | |||
317 | % the interval between measurements is irregular | |||
318 | % so we must group the data by time | |||
319 | if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end | |||
320 | ||||
321 | % string for plot title | |||
322 | name=[name ' (timestamp)']; | |||
323 | ||||
324 | % adjust time to remove any initial offset | |||
325 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |||
326 | %dtime=data.time-data.time(1); | |||
327 | % where is the maximum gap in time record? | |||
328 | gap_pos=find(diff(dtime)==max(diff(dtime))); | |||
329 | % what is average data spacing? | |||
330 | avg_gap = mean(diff(dtime)); | |||
331 | ||||
332 | if verbose >= 2 | |||
333 | fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |||
334 | fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |||
335 | fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |||
336 | fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |||
337 | pause; | |||
338 | end | |||
339 | ||||
340 | if verbose >= 1 | |||
341 | fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end)); | |||
342 | fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |||
343 | if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |||
344 | fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |||
345 | end | |||
346 | if max(diff(dtime)) > 5*avg_gap | |||
347 | fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |||
348 | end | |||
349 | end | |||
350 | ||||
351 | % is phase data present? If not, generate it | |||
352 | if ~isfield(data,'phase') | |||
353 | nfreq=data.freq-s.mean; | |||
354 | % NOTE: uncommenting the following two lines will artificially | |||
355 | % allow the code to give equivalent results for validation data | |||
356 | % sets using fixed rate data and timestamped data by adding a | |||
357 | % "phantom" data point for frequency integration. Use of this | |||
358 | % phantom point can skew the results of calculations on real data. | |||
359 | %nfreq(end+1)=0; % phantom freq point, with average value | |||
360 | %dtime(end+1)=dtime(end)+avg_gap; % phantom average time step | |||
361 | dphase=zeros(1,length(nfreq)); | |||
362 | dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime); | |||
363 | if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |||
364 | else | |||
365 | dphase=data.phase; | |||
366 | end | |||
367 | ||||
368 | % find halfway point | |||
369 | halftime = fix(dtime(end)/2); | |||
370 | % truncate tau to appropriate values | |||
371 | tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |||
372 | if isempty(tau) | |||
373 | error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |||
374 | end | |||
375 | ||||
376 | % % save the freq data for the loop | |||
377 | % dfreq=data.freq; | |||
378 | ||||
379 | % number of samples | |||
380 | N=length(dphase); | |||
381 | m=round(tau./mean(diff(dtime))); | |||
382 | ||||
383 | if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end | |||
384 | ||||
385 | k=0; tic; | |||
386 | for i = tau | |||
387 | ||||
388 | k=k+1; pa=[]; | |||
389 | ||||
390 | mphase = dphase; time = dtime; | |||
391 | ||||
392 | if verbose >= 2, fprintf(1,'%d ',i); end | |||
393 | ||||
394 | % calculate overlapping "phase averages" (x_k) | |||
395 | %for j = 1:i | |||
396 | for j = 1:m(k) % (v1.1) | |||
397 | km=0; | |||
398 | %fprintf(1,'j: %d ',j); | |||
399 | ||||
400 | % (v1.1) truncating not correct for overlapping samples | |||
401 | % truncate data set to an even multiple of this tau value | |||
402 | %mphase = mphase(time <= time(end)-rem(time(end),i)); | |||
403 | %time = time(time <= time(end)-rem(time(end),i)); | |||
404 | ||||
405 | ||||
406 | % break up the data into overlapping groups of tau length | |||
407 | while i*km < time(end) | |||
408 | km=km+1; | |||
409 | ||||
410 | % progress bar | |||
411 | if verbose >= 2 | |||
412 | if rem(km,100)==0, fprintf(1,'.'); end | |||
413 | if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |||
414 | end | |||
415 | ||||
416 | mp = mphase(i*(km-1) < (time) & (time) <= i*km); | |||
417 | ||||
418 | if ~isempty(mp) | |||
419 | pa(j,km)=mean(mp); | |||
420 | else | |||
421 | pa(j,km)=0; | |||
422 | end | |||
423 | ||||
424 | end | |||
425 | ||||
426 | % shift data vector by -1 and repeat | |||
427 | mphase=circshift(dphase,(size(mphase)>1)*-j); | |||
428 | mphase(end-j+1:end)=[]; | |||
429 | time=circshift(dtime,(size(time)>1)*-j); | |||
430 | time(end-j+1:end)=[]; | |||
431 | time=time-time(1)+avg_gap; % remove time offset | |||
432 | ||||
433 | end | |||
434 | ||||
435 | % create "modified" y_k freq values | |||
436 | mfreq=diff(pa,1,2)./i; | |||
437 | mfreq=reshape(mfreq,1,[]); | |||
438 | ||||
439 | % calculate modified frequency differences | |||
440 | mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | |||
441 | mfreqd=diff(mfreqd,1,2); | |||
442 | mfreqd=reshape(mfreqd,1,[]); | |||
443 | ||||
444 | % calculate two-sample variance for this tau | |||
445 | % only the first N-3*m(k)+1 samples are valid | |||
446 | if length(mfreqd) >= N-3*m(k)+1 | |||
447 | sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | |||
448 | ||||
449 | % estimate error bars | |||
450 | sme(k)=sm(k)/sqrt(N); | |||
451 | ||||
452 | if verbose >= 2, fprintf(1,'\n'); end | |||
453 | else | |||
454 | if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | |||
455 | sm(k)=0; sme(k)=0; | |||
456 | end | |||
457 | ||||
458 | ||||
459 | end | |||
460 | ||||
461 | if verbose >= 2, fprintf(1,'\n'); end | |||
462 | calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | |||
463 | ||||
464 | % remove any points that were dropped | |||
465 | tau(sm==0)=[]; | |||
466 | sm(sm==0)=[]; |
allan_overlap.m
File was created | 1 | function [retval, s, errorb, tau] = allan_overlap(data,tau,name,verbose) | ||
2 | % ALLAN_OVERLAP Compute the overlapping Allan deviation for a set of | |||
3 | % time-domain frequency data | |||
4 | % [RETVAL, S, ERRORB, TAU] = ALLAN_OVERLAP(DATA,TAU,NAME,VERBOSE) | |||
5 | % | |||
6 | % Inputs: | |||
7 | % DATA should be a struct and have the following fields: | |||
8 | % DATA.freq or DATA.phase | |||
9 | % A vector of fractional frequency measurements (df/f) in | |||
10 | % DATA.freq *or* phase offset data (seconds) in DATA.phase | |||
11 | % If phase data is not present, it will be generated by | |||
12 | % integrating the fractional frequency data. | |||
13 | % If both fields are present, then DATA.phase will be used. | |||
14 | % | |||
15 | % DATA.rate or DATA.time | |||
16 | % The sampling rate in Hertz (DATA.rate) or a vector of | |||
17 | % timestamps for each measurement in seconds (DATA.time). | |||
18 | % DATA.rate is used if both fields are present. | |||
19 | % If DATA.rate == 0, then the timestamps are used. | |||
20 | % | |||
21 | % TAU is an array of tau values for computing Allan deviation. | |||
22 | % TAU values must be divisible by 1/DATA.rate (data points cannot be | |||
23 | % grouped in fractional quantities!). Invalid values are ignored. | |||
24 | % NAME is an optional label that is added to the plot titles. | |||
25 | % VERBOSE sets the level of status messages: | |||
26 | % 0 = silent & no data plots; 1 = status messages; 2 = all messages | |||
27 | % | |||
28 | % Outputs: | |||
29 | % RETVAL is the array of overlapping Allan deviation values at each TAU. | |||
30 | % S is an optional output of other statistical measures of the data (mean, std, etc). | |||
31 | % ERRORB is an optional output containing the error estimates for a 1-sigma | |||
32 | % confidence interval. Error bars are plotted as vertical lines at each point. | |||
33 | % TAU is an optional output containing the array of tau values used in the | |||
34 | % calculation (which may be a truncated subset of the input or default values). | |||
35 | % | |||
36 | % Example: | |||
37 | % | |||
38 | % To compute the overlapping Allan deviation for the data in the variable "lt": | |||
39 | % >> lt | |||
40 | % lt = | |||
41 | % freq: [1x86400 double] | |||
42 | % rate: 0.5 | |||
43 | % | |||
44 | % Use: | |||
45 | % | |||
46 | % >> ado = allan_overlap(lt,[2 10 100],'lt data',1); | |||
47 | % | |||
48 | % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | |||
49 | % 1-sigma confidence intervals will be indicated by vertical lines. | |||
50 | % You can also use the default settings, which are usually a good starting point: | |||
51 | % | |||
52 | % >> ado = allan_overlap(lt); | |||
53 | % | |||
54 | % | |||
55 | % Notes: | |||
56 | % This function calculates the overlapping Allan deviation (ADEV), *not* the | |||
57 | % standard ADEV. Use "allan.m" for standard ADEV. | |||
58 | % The calculation is performed using phase data. If only frequency data is | |||
59 | % provided, phase data is generated by integrating the frequency data. | |||
60 | % However, the timestamp-based calculation is performed using frequency | |||
61 | % data. Phase data is differentiated to generate frequency data if necessary. | |||
62 | % No pre-processing of the data is performed, except to remove any | |||
63 | % initial offset in the time record. | |||
64 | % For rate-based data, ADEV is computed only for tau values greater than the | |||
65 | % minimum time between samples and less than the half the total time. For | |||
66 | % time-stamped data, only tau values greater than the maximum gap between | |||
67 | % samples and less than half the total time are used. | |||
68 | % The calculation for fixed sample rate data is *much* faster than for | |||
69 | % time-stamp data. You may wish to run the rate-based calculation first, | |||
70 | % then compare with time-stamp-based. Often the differences are insignificant. | |||
71 | % The error bars at each point are calculated using the 1-sigma intervals | |||
72 | % based on the size of the data set. This is usually an overestimate for | |||
73 | % overlapping ADEV; a more accurate (and usually smaller uncertainty) | |||
74 | % value can be determined from chi-squared statistics, but that is not | |||
75 | % implemented in this version. | |||
76 | % You can choose between loglog and semilog plotting of results by | |||
77 | % commenting in/out the appropriate line. Search for "#PLOTLOG". | |||
78 | % This function has been validated using the test data from NBS Monograph | |||
79 | % 140, the 1000-point test data set given by Riley [1], and the example data | |||
80 | % given in IEEE standard 1139-1999, Annex C. | |||
81 | % The author welcomes other validation results, see contact info below. | |||
82 | % | |||
83 | % For more information, see: | |||
84 | % [1] W. J. Riley, "Addendum to a test suite for the calculation of time domain | |||
85 | % frequency stability," presented at IEEE Frequency Control Symposium, | |||
86 | % 1996. | |||
87 | % Available on the web: | |||
88 | % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | |||
89 | % | |||
90 | % | |||
91 | % M.A. Hopcroft | |||
92 | % mhopeng at gmail dot com | |||
93 | % | |||
94 | % I welcome your comments and feedback! | |||
95 | % | |||
96 | % MH Mar2014 | |||
97 | % v2.24 fix bug related to generating freq data from phase with timestamps | |||
98 | % (thanks to S. David-Grignot for finding the bug) | |||
99 | % MH Oct2010 | |||
100 | % v2.22 tau truncation to integer groups; tau sort | |||
101 | % plotting bugfix | |||
102 | % v2.20 update to match allan.m (dsplot.m, columns) | |||
103 | % discard tau values with timestamp irregularities | |||
104 | ||||
105 | versionstr = 'allan_overlap v2.24'; | |||
106 | ||||
107 | % | |||
108 | % MH MAR2010 | |||
109 | % v2.1 bugfixes for irregular sample rates | |||
110 | % (thanks to Ryad Ben-El-Kezadri for feedback and testing) | |||
111 | % handle empty rate field | |||
112 | % fix integer comparisons for fractional sample rates | |||
113 | % update consistency check | |||
114 | % | |||
115 | % MH FEB2010 | |||
116 | % v2.0 use phase data for calculation- much faster | |||
117 | % Consistent code behaviour for all "allan_x.m" functions: | |||
118 | % accept phase data | |||
119 | % verbose levels | |||
120 | % | |||
121 | % MH JAN2010 | |||
122 | % v1.0 based on allan v1.84 | |||
123 | % | |||
124 | ||||
125 | %#ok<*AGROW> | |||
126 | ||||
127 | ||||
128 | % defaults | |||
129 | if nargin < 4, verbose = 2; end | |||
130 | if nargin < 3, name=''; end | |||
131 | if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | |||
132 | if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v2.1 | |||
133 | ||||
134 | % Formatting for plots | |||
135 | FontName = 'Arial'; | |||
136 | FontSize = 14; | |||
137 | plotlinewidth=2; | |||
138 | ||||
139 | if verbose >= 1, fprintf(1,'allan_overlap: %s\n\n',versionstr); end | |||
140 | ||||
141 | %% Data consistency checks v2.1 | |||
142 | if ~(isfield(data,'phase') || isfield(data,'freq')) | |||
143 | error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |||
144 | end | |||
145 | if isfield(data,'time') | |||
146 | if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |||
147 | if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |||
148 | error('The time and freq vectors are not the same length. See help for details. [con2]'); | |||
149 | else | |||
150 | error('The time and phase vectors are not the same length. See help for details. [con1]'); | |||
151 | end | |||
152 | end | |||
153 | if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |||
154 | error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |||
155 | end | |||
156 | if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |||
157 | error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |||
158 | end | |||
159 | if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |||
160 | error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |||
161 | end | |||
162 | end | |||
163 | ||||
164 | % sort tau vector | |||
165 | tau=sort(tau); | |||
166 | ||||
167 | %% Basic statistical tests on the data set | |||
168 | if ~isfield(data,'freq') | |||
169 | if isfield(data,'rate') && data.rate ~= 0 | |||
170 | data.freq=diff(data.phase).*data.rate; | |||
171 | elseif isfield(data,'time') | |||
172 | data.freq=diff(data.phase)./diff(data.time); | |||
173 | end | |||
174 | if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |||
175 | end | |||
176 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | |||
177 | ||||
178 | s.numpoints=length(data.freq); | |||
179 | s.max=max(data.freq); | |||
180 | s.min=min(data.freq); | |||
181 | s.mean=mean(data.freq); | |||
182 | s.median=median(data.freq); | |||
183 | if isfield(data,'time') | |||
184 | if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |||
185 | s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |||
186 | elseif isfield(data,'rate') && data.rate ~= 0; | |||
187 | s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |||
188 | else | |||
189 | error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]'); | |||
190 | end | |||
191 | s.std=std(data.freq); | |||
192 | ||||
193 | if verbose >= 2 | |||
194 | fprintf(1,'allan_overlap: fractional frequency data statistics:\n'); | |||
195 | disp(s); | |||
196 | end | |||
197 | ||||
198 | ||||
199 | % scale to median for plotting | |||
200 | medianfreq=data.freq-s.median; | |||
201 | sm=[]; sme=[]; | |||
202 | ||||
203 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | |||
204 | MAD = median(abs(medianfreq)/0.6745); | |||
205 | if verbose >= 1 && any(abs(medianfreq) > 5*MAD) | |||
206 | fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |||
207 | end | |||
208 | ||||
209 | %%%% | |||
210 | % There are four cases, freq or phase data, using timestamps or rate: | |||
211 | ||||
212 | %% Fixed Sample Rate Data | |||
213 | % If there is a regular interval between measurements, calculation is much | |||
214 | % easier/faster | |||
215 | if isfield(data,'rate') && data.rate > 0 % if data rate was given | |||
216 | if verbose >= 1 | |||
217 | fprintf(1, 'allan_overlap: regular data '); | |||
218 | if isfield(data,'freq') | |||
219 | fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | |||
220 | elseif isfield(data,'phase') | |||
221 | fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | |||
222 | else | |||
223 | error('\n phase or freq data missing [err10]'); | |||
224 | end | |||
225 | end | |||
226 | ||||
227 | % string for plot title | |||
228 | name=[name ' (' num2str(data.rate) ' Hz)']; | |||
229 | ||||
230 | % what is the time interval between data points? | |||
231 | tmstep = 1/data.rate; | |||
232 | ||||
233 | % Is there time data? Just for curiosity/plotting, does not impact calculation | |||
234 | if isfield(data,'time') | |||
235 | % adjust time data to remove any starting gap; first time step | |||
236 | % should not be zero for comparison with freq data | |||
237 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |||
238 | dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1) | |||
239 | if verbose >= 2 | |||
240 | fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end)); | |||
241 | if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |||
242 | fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |||
243 | end | |||
244 | end | |||
245 | else | |||
246 | % create time axis data using rate (for plotting only) | |||
247 | dtime=(tmstep:tmstep:length(data.freq)*tmstep); | |||
248 | end | |||
249 | ||||
250 | ||||
251 | % is phase data present? If not, generate it | |||
252 | if ~isfield(data,'phase') | |||
253 | nfreq=data.freq-s.mean; | |||
254 | dphase=zeros(1,length(nfreq)+1); | |||
255 | dphase(2:end) = cumsum(nfreq)./data.rate; | |||
256 | if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |||
257 | else | |||
258 | dphase=data.phase; | |||
259 | end | |||
260 | ||||
261 | % check the range of tau values and truncate if necessary | |||
262 | % find halfway point of time record | |||
263 | halftime = round(tmstep*length(data.freq)/2); | |||
264 | % truncate tau to appropriate values | |||
265 | tau = tau(tau >= tmstep & tau <= halftime); | |||
266 | if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |||
267 | ||||
268 | % number of samples | |||
269 | N=length(dphase); | |||
270 | % number of samples per tau period | |||
271 | m = data.rate.*tau; | |||
272 | % only integer values allowed for m (no fractional groups of points) | |||
273 | %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |||
274 | tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |||
275 | %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |||
276 | m = m(m==round(m)); | |||
277 | %m=round(m); | |||
278 | %fprintf(1,'m: %.50f\n',m) | |||
279 | ||||
280 | if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end | |||
281 | ||||
282 | % calculate the Allan deviation for each value of tau | |||
283 | k=0; tic; | |||
284 | for i = tau | |||
285 | k=k+1; | |||
286 | if verbose >= 2, fprintf(1,'%d ',i); end | |||
287 | ||||
288 | ||||
289 | % pad phase data set length to an even multiple of this tau value | |||
290 | mphase=zeros(ceil(length(dphase)./m(k))*m(k),1); | |||
291 | mphase(1:N)=dphase; | |||
292 | % group phase values | |||
293 | mp=reshape(mphase,m(k),[]); | |||
294 | % compute second differences of phase values (x_k+m - x_k) | |||
295 | md1=diff(mp,1,2); | |||
296 | md2=diff(md1,1,2); | |||
297 | md1=reshape(md2,1,[]); | |||
298 | ||||
299 | % compute overlapping ADEV from phase values | |||
300 | % only the first N-2*m(k) samples are valid | |||
301 | sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2)); | |||
302 | ||||
303 | % estimate error bars | |||
304 | sme(k)=sm(k)/sqrt(N-2*m(k)); | |||
305 | ||||
306 | ||||
307 | end % repeat for each value of tau | |||
308 | ||||
309 | if verbose >= 2, fprintf(1,'\n'); end | |||
310 | calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | |||
311 | ||||
312 | ||||
313 | ||||
314 | %% Irregular data, no fixed interval | |||
315 | elseif isfield(data,'time') | |||
316 | % the interval between measurements is irregular | |||
317 | % so we must group the data by time | |||
318 | if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end | |||
319 | ||||
320 | ||||
321 | % string for plot title | |||
322 | name=[name ' (timestamp)']; | |||
323 | ||||
324 | ||||
325 | % adjust time to remove any starting offset | |||
326 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |||
327 | ||||
328 | % save the freq data for the loop | |||
329 | dfreq=data.freq; | |||
330 | dtime=dtime(1:length(dfreq)); | |||
331 | ||||
332 | dfdtime=diff(dtime); % only need to do this once (v2.1) | |||
333 | % where is the maximum gap in time record? | |||
334 | gap_pos=find(dfdtime==max(dfdtime)); | |||
335 | % what is average data spacing? | |||
336 | avg_gap = mean(dfdtime); | |||
337 | s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1) | |||
338 | ||||
339 | if verbose >= 2 | |||
340 | fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |||
341 | fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |||
342 | fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |||
343 | fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |||
344 | pause; | |||
345 | end | |||
346 | ||||
347 | if verbose >= 1 | |||
348 | fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end)); | |||
349 | fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |||
350 | if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |||
351 | fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1)); | |||
352 | end | |||
353 | if max(diff(dtime)) > 5*avg_gap | |||
354 | fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |||
355 | end | |||
356 | end | |||
357 | ||||
358 | ||||
359 | % find halfway point | |||
360 | halftime = fix(dtime(end)/2); | |||
361 | % truncate tau to appropriate values | |||
362 | tau = tau(tau >= max(dfdtime) & tau <= halftime); | |||
363 | if isempty(tau) | |||
364 | error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime); | |||
365 | end | |||
366 | ||||
367 | ||||
368 | % number of samples | |||
369 | M=length(dfreq); | |||
370 | % number of samples per tau period | |||
371 | m=round(tau./avg_gap); | |||
372 | ||||
373 | if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end | |||
374 | ||||
375 | k=0; tic; | |||
376 | for i = tau | |||
377 | k=k+1; | |||
378 | fa=[]; | |||
379 | ||||
380 | if verbose >= 2, fprintf(1,'%d ',i); end | |||
381 | ||||
382 | freq = dfreq; time = dtime; | |||
383 | ||||
384 | ||||
385 | % compute overlapping samples (y_k) for this tau | |||
386 | %for j = 1:i | |||
387 | for j = 1:m(k) % (v2.1) | |||
388 | km=0; | |||
389 | %fprintf(1,'j: %d ',j); | |||
390 | ||||
391 | % (v2.1) truncating not correct for overlapping samples | |||
392 | % truncate data set to an even multiple of this tau value | |||
393 | %freq = freq(time <= time(end)-rem(time(end),i)); | |||
394 | %time = time(time <= time(end)-rem(time(end),i)); | |||
395 | ||||
396 | % break up the data into overlapping groups of tau length | |||
397 | while i*km <= time(end) | |||
398 | km=km+1; | |||
399 | %i*km | |||
400 | ||||
401 | % progress bar | |||
402 | if verbose >= 2 | |||
403 | if rem(km,100)==0, fprintf(1,'.'); end | |||
404 | if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |||
405 | end | |||
406 | ||||
407 | f = freq(i*(km-1) < (time) & (time) <= i*km); | |||
408 | ||||
409 | if ~isempty(f) | |||
410 | fa(j,km)=mean(f); | |||
411 | else | |||
412 | fa(j,km)=0; | |||
413 | end | |||
414 | ||||
415 | end | |||
416 | %fa | |||
417 | ||||
418 | % shift data vector by -1 and repeat | |||
419 | freq=circshift(dfreq,(size(freq)>1)*-j); | |||
420 | freq(end-j+1:end)=[]; | |||
421 | time=circshift(dtime,(size(time)>1)*-j); | |||
422 | time(end-j+1:end)=[]; | |||
423 | time=time-time(1)+avg_gap; % remove time offset | |||
424 | ||||
425 | end | |||
426 | ||||
427 | % compute second differences of fractional frequency values (y_k+m - y_k) | |||
428 | fd1=diff(fa,1,2); | |||
429 | fd1=reshape(fd1,1,[]); | |||
430 | % compute overlapping ADEV from fractional frequency values | |||
431 | % only the first M-2*m(k)+1 samples are valid | |||
432 | if length(fd1) >= M-2*m(k)+1 | |||
433 | sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2)); | |||
434 | ||||
435 | % estimate error bars | |||
436 | sme(k)=sm(k)/sqrt(M+1); | |||
437 | ||||
438 | if verbose >= 2, fprintf(1,'\n'); end | |||
439 | ||||
440 | else | |||
441 | if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | |||
442 | sm(k)=0; sme(k)=0; | |||
443 | end | |||
444 | ||||
445 | ||||
446 | end | |||
447 | ||||
448 | if verbose >= 2, fprintf(1,'\n'); end | |||
449 | calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | |||
450 | ||||
451 | % remove any points that were dropped | |||
452 | tau(sm==0)=[]; | |||
453 | sm(sm==0)=[]; | |||
454 | sme(sme==0)=[]; | |||
455 | ||||
456 |
allanplot.m
File was created | 1 | #!/usr/bin/octave-cli --persist | ||
2 | ||||
3 | filename = argv(){1}; | |||
4 | col = eval(argv(){2}); | |||
5 | mult = eval(argv(){3}); | |||
6 | ||||
7 | data.freq = load(filename)(:,col).*mult; | |||
8 | data.rate = 1; | |||
9 |
dsplot.m
File was created | 1 | function hL = dsplot(x, y, numPoints) | ||
2 | ||||
3 | %DSPLOT Create down sampled plot. | |||
4 | % This function creates a down sampled plot to improve the speed of | |||
5 | % exploration (zoom, pan). | |||
6 | % | |||
7 | % DSPLOT(X, Y) plots Y versus X by downsampling if there are large number | |||
8 | % of elements. X and Y needs to obey the following: | |||
9 | % 1. X must be a monotonically increasing vector. | |||
10 | % 2. If Y is a vector, it must be the same size as X. | |||
11 | % 3. If Y is a matrix, one of the dimensions must line up with X. | |||
12 | % | |||
13 | % DSPLOT(Y) plots the columns of Y versus their index. | |||
14 | % | |||
15 | % hLine = DSPLOT(X, Y) returns the handles of the line. Note that the | |||
16 | % lines may be downsampled, so they may not represent the full data set. | |||
17 | % | |||
18 | % DSPLOT(X, Y, NUMPOINTS) or DSPLOT(Y, [], NUMPOINTS) specifies the | |||
19 | % number of points (roughly) to display on the screen. The default is | |||
20 | % 50000 points (~390 kB doubles). NUMPOINTS can be a number greater than | |||
21 | % 500. | |||
22 | % | |||
23 | % It is very likely that more points will be displayed than specified by | |||
24 | % NUMPOINTS, because it will try to plot any outlier points in the range. | |||
25 | % If the signal is stochastic or has a lot of sharp changes, there will | |||
26 | % be more points on plotted on the screen. | |||
27 | % | |||
28 | % The figure title (name) will indicate whether the plot shown is | |||
29 | % downsampled or is the true representation. | |||
30 | % | |||
31 | % The figure can be saved as a .fig file, which will include the actual | |||
32 | % data. The figure can be reloaded and the actual data can be exported to | |||
33 | % the base workspace via a menu. | |||
34 | % | |||
35 | % Run the following examples and zoom/pan to see the performance. | |||
36 | % | |||
37 | % Example 1: (with small details) | |||
38 | % x = linspace(0, 2*pi, 1000000); | |||
39 | % y1 = sin(x)+.02*cos(200*x)+0.001*sin(2000*x)+0.0001*cos(20000*x); | |||
40 | % dsplot(x,y1);title('Down Sampled'); | |||
41 | % % compare with | |||
42 | % figure;plot(x,y1);title('Normal Plot'); | |||
43 | % | |||
44 | % Example 2: (with outlier points) | |||
45 | % x = linspace(0, 2*pi, 1000000); | |||
46 | % y1 = sin(x) + .01*cos(200*x) + 0.001*sin(2000*x); | |||
47 | % y2 = sin(x) + 0.3*cos(3*x) + 0.001*randn(size(x)); | |||
48 | % y1([300000, 700000, 700001, 900000]) = [0, 1, -2, 0.5]; | |||
49 | % y2(300000:500000) = y2(300000:500000) + 1; | |||
50 | % y2(500001:600000) = y2(500001:600000) - 1; | |||
51 | % y2(800000) = 0; | |||
52 | % dsplot(x, [y1;y2]);title('Down Sampled'); | |||
53 | % % compare with | |||
54 | % figure;plot(x, [y1;y2]);title('Normal Plot'); | |||
55 | % | |||
56 | % See also PLOT. | |||
57 | ||||
58 | % Version: | |||
59 | % v1.0 - first version (Aug 1, 2007) | |||
60 | % v1.1 - added CreateFcn for the figure so that when the figure is saved | |||
61 | % and re-loaded, the zooming and panning works. Also added a menu | |||
62 | % item for saving out the original data back to the base | |||
63 | % workspace. (Aug 10, 2007) | |||
64 | % | |||
65 | % Jiro Doke | |||
66 | % August 1, 2007 | |||
67 | ||||
68 | debugMode = false; | |||
69 | ||||
70 | %-------------------------------------------------------------------------- | |||
71 | % Error checking | |||
72 | error(nargchk(1, 3, nargin, 'struct')); | |||
73 | if nargin < 3 | |||
74 | % Number of points to show on the screen. It's quite possible that more | |||
75 | % points will be displayed if there are outlier points | |||
76 | numPoints = 50000; % ~390 kB for doubles | |||
77 | end | |||
78 | if nargin == 1 || isempty(y) | |||
79 | noXVar = true; | |||
80 | y = x; | |||
81 | x = []; | |||
82 | else | |||
83 | noXVar = false; | |||
84 | end | |||
85 | myErrorCheck; | |||
86 | %-------------------------------------------------------------------------- | |||
87 | ||||
88 | if size(x, 2) > 1 % it's a row vector -> transpose | |||
89 | x = x'; | |||
90 | y = y'; | |||
91 | varTranspose = true; | |||
92 | else | |||
93 | varTranspose = false; | |||
94 | end | |||
95 | ||||
96 | % Number of lines | |||
97 | numSignals = size(y, 2); | |||
98 | ||||
99 | % If the number of lines is greater than the number of data points per | |||
100 | % line, it's possible that the user may have mistaken the matrix | |||
101 | % orientation. | |||
102 | if numSignals > size(y, 1) | |||
103 | s = input(sprintf('Are you sure you want to plot %d lines? (y/n) ', ... | |||
104 | numSignals), 's'); | |||
105 | if ~strcmpi(s, 'y') | |||
106 | disp('Canceled. You may want to transpose the matrix.'); | |||
107 | if nargout == 1 | |||
108 | hL = []; | |||
109 | end | |||
110 | return; | |||
111 | end | |||
112 | end | |||
113 | ||||
114 | % Attempt to find outliers. Use a running average technique | |||
115 | filterWidth = ceil(min([50, length(x)/10])); % max window size of 50 | |||
116 | a = y - filter(ones(filterWidth,1)/filterWidth, 1, y); | |||
117 | [iOutliers, jOutliers] = find(abs(a - repmat(mean(a), size(a, 1), 1)) > ... | |||
118 | repmat(4 * std(a), size(a, 1), 1)); | |||
119 | clear a; | |||
120 | ||||
121 | % Always create new figure because it messes around with zoom, pan, | |||
122 | % datacursors. | |||
123 | hFig = figure; | |||
124 | figName = ''; | |||
125 | ||||
126 | % Create template plot using NaNs | |||
127 | hLine = plot(NaN(2, numSignals), NaN(2, numSignals)); | |||
128 | set(hLine, 'tag', 'dsplot_lines'); | |||
129 | ||||
130 | % Define CreateFcn for the figure | |||
131 | set(hFig, 'CreateFcn', @mycreatefcn); | |||
132 | mycreatefcn(); | |||
133 | ||||
134 | % Create menu for exporting data | |||
135 | hMenu = uimenu(hFig, 'Label', 'Data'); | |||
136 | uimenu(hMenu, ... | |||
137 | 'Label' , 'Export data to workspace.', ... | |||
138 | 'Callback', @myExportFcn); | |||
139 | ||||
140 | % Update lines | |||
141 | updateLines([min(x), max(x)]); | |||
142 | ||||
143 | % Deal with output argument | |||
144 | if nargout == 1 | |||
145 | hL = hLine; | |||
146 | end | |||
147 | ||||
148 | %-------------------------------------------------------------------------- | |||
149 | function myExportFcn(varargin) | |||
150 | % This callback allows for extracting the actual data from the figure. | |||
151 | % This means that if you save this figure and load it back later, you | |||
152 | % can get back the data. | |||
153 | ||||
154 | % Determine the variable name | |||
155 | allVarNames = evalin('base', 'who'); | |||
156 | newVarName = genvarname('dsplotData', allVarNames); | |||
157 | ||||
158 | % X | |||
159 | if ~noXVar | |||
160 | if varTranspose | |||
161 | dat.x = x'; | |||
162 | else | |||
163 | dat.x = x; | |||
164 | end | |||
165 | end | |||
166 | ||||
167 | % Y | |||
168 | if varTranspose | |||
169 | dat.y = y'; | |||
170 | else | |||
171 | dat.y = y; | |||
172 | end | |||
173 | ||||
174 | assignin('base', newVarName, dat); | |||
175 | ||||
176 | msgbox(sprintf('Data saved to the base workspace as ''%s''.', ... | |||
177 | newVarName), 'Saved', 'modal'); | |||
178 | ||||
179 | end | |||
180 | ||||
181 | %-------------------------------------------------------------------------- | |||
182 | function mycreatefcn(varargin) | |||
183 | % This callback defines the custom zoom/pan functions. It is defined as | |||
184 | % the CreateFcn of the figure, so it allows for saving and reloading of | |||
185 | % the figure. | |||
186 | ||||
187 | if nargin > 0 | |||
188 | hFig = varargin{1}; | |||
189 | end | |||
190 | hLine = findobj(hFig, 'type', 'axes'); | |||
191 | hLine(strmatch('legend', get(hLine, 'tag'))) = []; | |||
192 | hLine = get(hLine, 'Children'); | |||
193 | ||||
194 | % Create Zoom, Pan, Datacursor objects | |||
195 | hZoom = zoom(hFig); | |||
196 | hPan = pan(hFig); | |||
197 | hDc = datacursormode(hFig); | |||
198 | set(hZoom, 'ActionPostCallback', @mypostcallback); | |||
199 | set(hPan , 'ActionPostCallback', @mypostcallback); | |||
200 | set(hDc , 'UpdateFcn' , @myDCupdatefcn); | |||
201 | ||||
202 | end | |||
203 | ||||
204 | %-------------------------------------------------------------------------- | |||
205 | function mypostcallback(obj, evd) %#ok | |||
206 | % This callback that gets called when the mouse is released after | |||
207 | % zooming or panning. | |||
208 | ||||
209 | % single or double-click | |||
210 | switch get(hFig, 'SelectionType') | |||
211 | case {'normal', 'alt'} | |||
212 | updateLines(xlim(evd.Axes)); | |||
213 | ||||
214 | case 'open' | |||
215 | updateLines([min(x), max(x)]); | |||
216 | ||||
217 | end | |||
218 | ||||
219 | end | |||
220 | ||||
221 | %-------------------------------------------------------------------------- | |||
222 | function updateLines(rng) | |||
223 | % This helper function is for determining the points to plot on the | |||
224 | % screen based on which portion is visible in the current limits. | |||
225 | ||||
226 | % find indeces inside the range | |||
227 | id = find(x >= rng(1) & x <= rng(2)); | |||
228 | ||||
229 | % if there are more points than we want | |||
230 | if length(id) > numPoints / numSignals | |||
231 | ||||
232 | % see how many outlier points are in this range | |||
233 | blah = iOutliers > id(1) & iOutliers < id(end); | |||
234 | ||||
235 | % determine indeces of points to plot. | |||
236 | idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))'; | |||
237 | ||||
238 | x2 = cell(numSignals, 1); | |||
239 | y2 = x2; | |||
240 | for iSignals = 1:numSignals | |||
241 | % add outlier points | |||
242 | ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]); | |||
243 | x2{iSignals} = x(ididid); | |||
244 | y2{iSignals} = y(ididid, iSignals); | |||
245 | end | |||
246 | ||||
247 | if debugMode | |||
248 | figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))]; | |||
249 | else | |||
250 | figName = 'downsampled'; | |||
251 | end | |||
252 | ||||
253 | else % no need to down sample | |||
254 | figName = 'true'; | |||
255 | ||||
256 | x2 = repmat({x(id)}, numSignals, 1); | |||
257 | y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))'; | |||
258 | ||||
259 | end | |||
260 | ||||
261 | % Update plot | |||
262 | set(hLine, {'xdata', 'ydata'} , [x2, y2]); | |||
263 | set(hFig, 'Name', figName); | |||
264 | ||||
265 | end | |||
266 | ||||
267 | %-------------------------------------------------------------------------- | |||
268 | function txt = myDCupdatefcn(empt, event_obj) %#ok | |||
269 | % This function displays appropriate data cursor message based on the | |||
270 | % display type |
pt100.m
File was created | 1 | function T = pt100(R) | ||
2 | ||||
3 | pt100 = @(R) (R/100.-1)/0.003850+273.15; |
res2temp16941.m
File was created | 1 | function T = res2temp16941(R) | ||
2 | ||||
3 | res2temp16941 = @(R) 10.^(2.9486 * (log10(1000./R)).^2 + 4.5862 * log10(1000./R) + 2.266); |
res2temp16943.m
File was created | 1 | function T = res2temp16943(R) | ||
2 | ||||
3 | res2temp16943 = @(R) 10.^(3.4738 * (log10(1000./R)).^2 + 5.1198 * log10(1000./R) + 2.3681); |
res2temp16944.m
File was created | 1 | function T = res2temp16944(R) | ||
2 | ||||
3 | res2temp16944 = @(R) 10.^(3.3674 * (log10(1000./R)).^2 + 5.2874 * log10(1000./R) + 2.5165); |
res2temp16945.m
File was created | 1 | function T = res2temp16945(R) | ||
2 | ||||
3 | res2temp16945 = @(R) 10.^(3.2497 * (log10(1000./R)).^2 + 5.1777 * log10(1000./R) + 2.499); |
res2temp16947.m
File was created | 1 | function T = res2temp16947(R) | ||
2 | ||||
3 | res2temp16947 = @(R) 10.^(3.4597 * (log10(1000./R)).^2 + 5.2422 * log10(1000./R) + 2.4169); |
res2temp625.m
File was created | 1 | function T = res2temp625(R) | ||
2 | ||||
3 | res2temp625 = @(R) 0.333548856582638109 + 11.7361551595386118 * (1000./R) + -31.32988932320903987 * (1000./R).^2 + 262.878643524833024 * (1000./R).^3 + -704.163538021035492 * (1000./R).^4 + 1056.6040485650301 * (1000./R).^5 + -307.057196729816496 * (1000./R).^6; |
res2temp627.m
File was created | 1 | function T = res2temp627(R) | ||
2 | ||||
3 | res2temp627 = @(R) 0.399341181655472610 + 10.8420092277810909 * (1000./R) + -26.4597939187660813 * (1000./R).^2 + 245.9828566655493379 * (1000./R).^3 + -668.069876596331596 * (1000./R).^4 + 1001.69882618263364 * (1000./R) .^5 + -267.272089680656791 * (1000./R).^6; |
res2temp628.m
File was created | 1 | function T = res2temp628(R) | ||
2 | ||||
3 | res2temp628 = @(R) 0.463200932294057566 + 13.5049710820894688 * (1000./R) + -30.5191222755238414 * (1000./R).^2 + 231.098593852017075* (1000./R).^3 + -550.122691885568202 * (1000./R).^4 + 806.038547554984689 * (1000./R).^5 + -198.510489917360246 * (1000./R).^6; |