Blame view
dsplot.m
9.73 KB
b197c3fdf first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
function hL = dsplot(x, y, numPoints) %DSPLOT Create down sampled plot. % This function creates a down sampled plot to improve the speed of % exploration (zoom, pan). % % DSPLOT(X, Y) plots Y versus X by downsampling if there are large number % of elements. X and Y needs to obey the following: % 1. X must be a monotonically increasing vector. % 2. If Y is a vector, it must be the same size as X. % 3. If Y is a matrix, one of the dimensions must line up with X. % % DSPLOT(Y) plots the columns of Y versus their index. % % hLine = DSPLOT(X, Y) returns the handles of the line. Note that the % lines may be downsampled, so they may not represent the full data set. % % DSPLOT(X, Y, NUMPOINTS) or DSPLOT(Y, [], NUMPOINTS) specifies the % number of points (roughly) to display on the screen. The default is % 50000 points (~390 kB doubles). NUMPOINTS can be a number greater than % 500. % % It is very likely that more points will be displayed than specified by % NUMPOINTS, because it will try to plot any outlier points in the range. % If the signal is stochastic or has a lot of sharp changes, there will % be more points on plotted on the screen. % % The figure title (name) will indicate whether the plot shown is % downsampled or is the true representation. % % The figure can be saved as a .fig file, which will include the actual % data. The figure can be reloaded and the actual data can be exported to % the base workspace via a menu. % % Run the following examples and zoom/pan to see the performance. % % Example 1: (with small details) % x = linspace(0, 2*pi, 1000000); % y1 = sin(x)+.02*cos(200*x)+0.001*sin(2000*x)+0.0001*cos(20000*x); % dsplot(x,y1);title('Down Sampled'); % % compare with % figure;plot(x,y1);title('Normal Plot'); % % Example 2: (with outlier points) % x = linspace(0, 2*pi, 1000000); % y1 = sin(x) + .01*cos(200*x) + 0.001*sin(2000*x); % y2 = sin(x) + 0.3*cos(3*x) + 0.001*randn(size(x)); % y1([300000, 700000, 700001, 900000]) = [0, 1, -2, 0.5]; % y2(300000:500000) = y2(300000:500000) + 1; % y2(500001:600000) = y2(500001:600000) - 1; % y2(800000) = 0; % dsplot(x, [y1;y2]);title('Down Sampled'); % % compare with % figure;plot(x, [y1;y2]);title('Normal Plot'); % % See also PLOT. % Version: % v1.0 - first version (Aug 1, 2007) % v1.1 - added CreateFcn for the figure so that when the figure is saved % and re-loaded, the zooming and panning works. Also added a menu % item for saving out the original data back to the base % workspace. (Aug 10, 2007) % % Jiro Doke % August 1, 2007 debugMode = false; %-------------------------------------------------------------------------- % Error checking error(nargchk(1, 3, nargin, 'struct')); if nargin < 3 % Number of points to show on the screen. It's quite possible that more % points will be displayed if there are outlier points numPoints = 50000; % ~390 kB for doubles end if nargin == 1 || isempty(y) noXVar = true; y = x; x = []; else noXVar = false; end myErrorCheck; %-------------------------------------------------------------------------- if size(x, 2) > 1 % it's a row vector -> transpose x = x'; y = y'; varTranspose = true; else varTranspose = false; end % Number of lines numSignals = size(y, 2); % If the number of lines is greater than the number of data points per % line, it's possible that the user may have mistaken the matrix % orientation. if numSignals > size(y, 1) s = input(sprintf('Are you sure you want to plot %d lines? (y/n) ', ... numSignals), 's'); if ~strcmpi(s, 'y') disp('Canceled. You may want to transpose the matrix.'); if nargout == 1 hL = []; end return; end end % Attempt to find outliers. Use a running average technique filterWidth = ceil(min([50, length(x)/10])); % max window size of 50 a = y - filter(ones(filterWidth,1)/filterWidth, 1, y); [iOutliers, jOutliers] = find(abs(a - repmat(mean(a), size(a, 1), 1)) > ... repmat(4 * std(a), size(a, 1), 1)); clear a; % Always create new figure because it messes around with zoom, pan, % datacursors. hFig = figure; figName = ''; % Create template plot using NaNs hLine = plot(NaN(2, numSignals), NaN(2, numSignals)); set(hLine, 'tag', 'dsplot_lines'); % Define CreateFcn for the figure set(hFig, 'CreateFcn', @mycreatefcn); mycreatefcn(); % Create menu for exporting data hMenu = uimenu(hFig, 'Label', 'Data'); uimenu(hMenu, ... 'Label' , 'Export data to workspace.', ... 'Callback', @myExportFcn); % Update lines updateLines([min(x), max(x)]); % Deal with output argument if nargout == 1 hL = hLine; end %-------------------------------------------------------------------------- function myExportFcn(varargin) % This callback allows for extracting the actual data from the figure. % This means that if you save this figure and load it back later, you % can get back the data. % Determine the variable name allVarNames = evalin('base', 'who'); newVarName = genvarname('dsplotData', allVarNames); % X if ~noXVar if varTranspose dat.x = x'; else dat.x = x; end end % Y if varTranspose dat.y = y'; else dat.y = y; end assignin('base', newVarName, dat); msgbox(sprintf('Data saved to the base workspace as ''%s''.', ... newVarName), 'Saved', 'modal'); end %-------------------------------------------------------------------------- function mycreatefcn(varargin) % This callback defines the custom zoom/pan functions. It is defined as % the CreateFcn of the figure, so it allows for saving and reloading of % the figure. if nargin > 0 hFig = varargin{1}; end hLine = findobj(hFig, 'type', 'axes'); hLine(strmatch('legend', get(hLine, 'tag'))) = []; hLine = get(hLine, 'Children'); % Create Zoom, Pan, Datacursor objects hZoom = zoom(hFig); hPan = pan(hFig); hDc = datacursormode(hFig); set(hZoom, 'ActionPostCallback', @mypostcallback); set(hPan , 'ActionPostCallback', @mypostcallback); set(hDc , 'UpdateFcn' , @myDCupdatefcn); end %-------------------------------------------------------------------------- function mypostcallback(obj, evd) %#ok % This callback that gets called when the mouse is released after % zooming or panning. % single or double-click switch get(hFig, 'SelectionType') case {'normal', 'alt'} updateLines(xlim(evd.Axes)); case 'open' updateLines([min(x), max(x)]); end end %-------------------------------------------------------------------------- function updateLines(rng) % This helper function is for determining the points to plot on the % screen based on which portion is visible in the current limits. % find indeces inside the range id = find(x >= rng(1) & x <= rng(2)); % if there are more points than we want if length(id) > numPoints / numSignals % see how many outlier points are in this range blah = iOutliers > id(1) & iOutliers < id(end); % determine indeces of points to plot. idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))'; x2 = cell(numSignals, 1); y2 = x2; for iSignals = 1:numSignals % add outlier points ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]); x2{iSignals} = x(ididid); y2{iSignals} = y(ididid, iSignals); end if debugMode figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))]; else figName = 'downsampled'; end else % no need to down sample figName = 'true'; x2 = repmat({x(id)}, numSignals, 1); y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))'; end % Update plot set(hLine, {'xdata', 'ydata'} , [x2, y2]); set(hFig, 'Name', figName); end %-------------------------------------------------------------------------- function txt = myDCupdatefcn(empt, event_obj) %#ok % This function displays appropriate data cursor message based on the % display type pos = get(event_obj,'Position'); switch figName case 'true' txt = {['X: ',num2str(pos(1))],... ['Y: ',num2str(pos(2))]}; otherwise txt = {['X: ',num2str(pos(1))],... ['Y: ',num2str(pos(2))], ... 'Warning: Downsampled', ... 'May not be accurate'}; end end %-------------------------------------------------------------------------- function myErrorCheck % Do some error checking on the input arguments. if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500 error('Third argument must be a scalar greater than 500'); end if ~isnumeric(x) || ~isnumeric(y) error('Arguments must be numeric'); end if length(size(x)) > 2 || length(size(y)) > 2 error('Only 2-D data accepted'); end % If only one input, create index vector X if isempty(x) if ismember(1, size(y)) x = reshape(1:numel(y), size(y)); else x = (1:size(y, 1))'; end end if ~ismember(1, size(x)) error('First argument has to be a vector'); end if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2)) error('One of the dimensions of the two arguments must match'); end if any(diff(x) <= 0) error('The first argument has to be a monotonically increasing vector'); end end end |