Blame view

allan_cov.m 22 KB
b3b851a23   bmarechal   add cov test scripts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  function [retval, s, errorb, tau] = allan_cov(data,tau,name,verbose)
  % ALLAN  Compute the Allan deviation for a set of time-domain frequency data
  % [RETVAL, S, ERRORB, TAU] = ALLAN(DATA,TAU,NAME,VERBOSE)
  %
  % Inputs:
  % DATA should be a structure and have the following fields:
  %  DATA.freq or DATA.phase
  %               A vector of fractional frequency measurements (df/f) in
  %                DATA.freq *or* phase offset data (seconds) in DATA.phase .
  %               If frequency data is not present, it will be generated by
  %                differentiating the phase data.
  %               If both fields are present, then DATA.freq will be used.
  %               Note: for general-purpose calculations of Allan deviation,
  %                (i.e. a two-sample variance) use DATA.freq .
  %
  %  DATA.rate or DATA.time
  %               The sampling rate in Hertz (DATA.rate) or a vector of
  %               timestamps for each measurement in seconds (DATA.time).
  %               DATA.rate is used if both fields are present.
  %               If DATA.rate == 0, then the timestamps are used.
  %
  %  DATA.units (optional)
  %               The units for the data. If present, the string DATA.units
  %               is added to the plot y-axis label.
  %
  % TAU is an array of tau values for computing Allan deviation.
  %     TAU values must be divisible by 1/DATA.rate (data points cannot be
  %     grouped in fractional quantities!) and invalid values are ignored.
  %     Leave empty to use default values.
  % NAME is an optional label that is added to the plot titles.
  % VERBOSE sets the level of status messages:
  %     0 = silent & no data plots;
  %     1 = status messages & minimum plots;
  %     2 = all messages and plots (default)
  %
  % Outputs:
  % RETVAL is the array of Allan deviation values at each TAU.
  % S is an optional output of other statistical measures of the data (mean, std, etc).
  % ERRORB is an optional output containing the error estimates for a 1-sigma
  %   confidence interval. These values are shown on the figure for each point.
  % TAU is an optional output containing the array of tau values used in the
  % calculation (which may be a truncated subset of the input or default values).
  %
  % Example:
  %
  % To compute the Allan deviation for the data in the variable "lt":
  % >> lt
  % lt = 
  %     freq: [1x86400 double]
  %     rate: 0.5
  %
  % Use:
  %
  % >> ad = allan(lt,[2 10 100],'lt data',1);
  %
  % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds.
  %  1-sigma confidence intervals will be indicated by vertical lines at each point.
  % You can also use the default settings, which are usually a good starting point:
  %
  % >> ad = allan(lt);
  %
  %
  % Notes:
  %  This function calculates the standard Allan deviation (ADEV), *not* the
  %   overlapping ADEV. Use "allan_overlap.m" for overlapping ADEV.
  %  The calculation is performed using fractional frequency data. If only
  %   phase data is provided, frequency data is generated by differentiating
  %   the phase data.
  %  No pre-processing of the data is performed, except to remove any
  %   initial offset (i.e., starting gap) in the time record.
  %  For rate-based data, ADEV is computed only for tau values greater than the
  %   minimum time between samples and less than the half the total time. For
  %   time-stamped data, only tau values greater than the maximum gap between
  %   samples and less than half the total time are used.
  %  The calculation for fixed sample rate data is *much* faster than for
  %   time-stamp data. You may wish to run the rate-based calculation first,
  %   then compare with time-stamp-based. Often the differences are insignificant.
  %  To show the "tau bins" (y_k samples) on the data plot, set the variable
  %   TAUBIN to 1 (search for "#TAUBIN").
  %  You can choose between loglog and semilog plotting of results by
  %   commenting in/out the appropriate line. Search for "#PLOTLOG".
  %  I recommend installing "dsplot.m", which improves the performance of
  %   plotting large data sets. Download from File Exchange, File ID: #15850.
  %   allan.m will use dsplot.m if it is present on your MATLAB path.
  %  This function has been validated using the test data from NBS Monograph
  %   140, the 1000-point test data set given by Riley [1], and the example data
  %   given in IEEE standard 1139-1999, Annex C.
  %   The author welcomes other validation results, see contact info below.
  %
  % For more information, see:
  % [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability,"
  % Available on the web:
  %  http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht
  %
  %
  % M.A. Hopcroft
  %      mhopeng at gmail dot com
  %
  % I welcome your comments and feedback!
  %
  % MH Mar2014
  % v2.24 fix bug related to generating freq data from phase with timestamps
  %       (thanks to S. David-Grignot for finding the bug)
  % MH Oct2010
  % v2.22 tau truncation to integer groups; tau sort
  %       plotting bugfix
  % v2.20 sychronize updates across allan, allan_overlap, allan_modified
  % v2.16 add TAU as output, fixed unusual error with dsplot v1.1
  % v2.14 update plotting behaviour, default tau values
  %
  
  versionstr = 'allan v2.24';
  
  % MH Jun2010
  % v2.12 bugfix for rate data row/col orientation
  %       add DATA.units for plotting
  %       use dsplot.m for plotting
  %
  % MH MAR2010
  % v2.1  minor interface and bugfixes
  %       update data consistency check
  %
  % MH FEB2010
  % v2.0  Consistent code behaviour for all "allan_x.m" functions:
  %       accept phase data
  %       verbose levels
  %
  %
  % MH JAN2010
  % v1.84  code cleanup
  % v1.82  typos in comments and code cleanup
  %        tau bin plotting changed for performance improvement
  % v1.8   Performance improvements:
  %        vectorize code for rate data
  %        logical indexing for irregular rate data
  % MH APR2008
  % v1.62  loglog plot option
  % v1.61  improve error handling, plotting
  %        fix bug in regular data calc for high-rate data
  %        fix bug in timestamp data calc for large starting gap
  %         (thanks to C. B. Ruiz for identifying these bugs)
  %        uses timestamps for DATA.rate=0
  %        progress indicator for large timestamp data processing
  % MH JUN2007
  % v1.54 Improve data plotting and optional bin plotting
  % MH FEB2007
  % v1.5  use difference from median for plotting
  %       added MAD calculation for outlier detection
  % MH JAN2007
  % v1.48 plotting typos fixes
  % MH DEC2006
  % v1.46 hack to plot error bars
  % v1.44 further validation (Riley 1000-pt)
  %       plot mean and std
  % MH NOV2006
  % v1.42 typo fix comments
  % v1.4  fix irregular rate algorithm
  %       irregular algorithm rejects tau less than max gap in time data
  %       validate both algorithms using test data from NBS Monograph 140
  % v1.3  fix time calc if data.time not present
  %       add error bars (not possible due to bug in MATLAB R14SP3)
  %       remove offset calculation
  % v1.24 improve feedback
  % MH SEP2006
  % v1.22 updated comments
  % v1.2  errors and warnings
  % v1.1  handle irregular interval data
  %#ok<*AGROW>
  
  % defaults
  if nargin < 4, verbose=2; end
  if nargin < 3, name=''; end
  if nargin < 2 || isempty(tau), tau=2.^(-10:10); end
  
  % plot "tau bins"? #TAUBIN
  TAUBIN = 0; % set 0 or 1 % WARNING: this has a significant impact on performance
  
  % Formatting for plots
  FontName = 'Arial';
  FontSize = 14;
  plotlinewidth=2;
  
  if verbose >= 1, fprintf(1,'allan: %s
  
  ',versionstr); end
  
  %% Data consistency checks
  if ~(isfield(data,'phase') || isfield(data,'freq'))
      error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
  end
  if isfield(data,'time')
      if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
          if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
              error('The time and freq vectors are not the same length. See help for details. [con2]');
          else
              error('The time and phase vectors are not the same length. See help for details. [con1]');
          end
      end
      if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
          error('The phase vector contains invalid elements (NaN/Inf). [con3]');
      end
      if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
          error('The freq vector contains invalid elements (NaN/Inf). [con4]');
      end
      if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
          error('The time vector contains invalid elements (NaN/Inf). [con5]');
      end
  end
  
  % sort tau vector
  tau=sort(tau);
  
  
  %% Basic statistical tests on the data set
  if ~isfield(data,'freq')
      if isfield(data,'rate') && data.rate ~= 0
          data.freq=diff(data.phase).*data.rate;
      elseif isfield(data,'time')
          data.freq=diff(data.phase)./diff(data.time);
      end
      if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).
  ',length(data.freq)); end
      data.time(1)=[]; % make time stamps correspond to freq data 
  end
  if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns
      
  s.numpoints=length(data.freq);
  s.max=max(data.freq);
  s.min=min(data.freq);
  s.mean=mean(data.freq);
  s.median=median(data.freq);
  if isfield(data,'time')
      if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
      s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
  elseif isfield(data,'rate') && data.rate ~= 0;
      s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
  else
      error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]');
  end
  s.std=std(data.freq);
  
  if verbose >= 2
      fprintf(1,'allan: input data statistics:
  ');
      disp(s);
  end
  
  
  % center at median for plotting
  medianfreq=data.freq-s.median;
  sm=[]; sme=[];
  
  % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria
  s.MAD = median(abs(medianfreq)/0.6745);
  if verbose >= 2
      fprintf(1, 'allan: 5x MAD value for outlier detection: %g
  ',5*s.MAD);
  end
  if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD)
      fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.
  ');
  end
  
  
  %%%%
  % There are two cases, either using timestamps or fixed sample rate:
  
  %% Fixed Sample Rate Data
  %  If there is a regular interval between measurements, calculation is much
  %   easier/faster
  if isfield(data,'rate') && data.rate > 0 % if data rate was given
      if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)
  ',length(data.freq),data.rate); end
      
      % string for plot title
      name=[name ' (' num2str(data.rate) ' Hz)'];
      
      % what is the time interval between data points?
      tmstep = 1/data.rate;
     
      % Is there time data? Just for curiosity/plotting, does not impact calculation
      if isfield(data,'time')
          % adjust time data to remove any starting gap; first time step
          %  should not be zero for comparison with freq data
          dtime=data.time-data.time(1)+mean(diff(data.time));
          if verbose >= 2
              fprintf(1,'allan: End of timestamp data: %g sec.
  ',dtime(end));
              if (data.rate - 1/mean(diff(dtime))) > 1e-6
                  fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)
  ',data.rate,1/mean(diff(dtime)));
              end
          end
      else
          % create time axis data using rate (for plotting only)
          dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented
      end
  
      % check the range of tau values and truncate if necessary
      % find halfway point of time record
      halftime = round(tmstep*length(data.freq)/2);
      % truncate tau to appropriate values
      tau = tau(tau >= tmstep & tau <= halftime);
      if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)
  ',tmstep,halftime); end  
      
      % save the freq data for the loop
      dfreq=data.freq;
      dfreq2=data.freq2;
      % find the number of data points in each tau group
      m = data.rate.*tau;
      % only integer values allowed (no fractional groups of points)
      %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
      tau = tau(m==round(m));  % The round() test is only correct for values < 2^53
      %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
      m = m(m==round(m));
      %m=round(m);
      
      if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...
         '); end
      
      % calculate the Allan deviation for each value of tau
      k=0; tic;
      for i = tau
          if verbose >= 2, fprintf(1,'%g ',i); end
          k=k+1;
  
          % truncate frequency set to an even multiple of this tau value
          freq=dfreq(1:end-rem(length(dfreq),m(k)));
          freq2=dfreq2(1:end-rem(length(dfreq2),m(k)));
          % group the data into tau-length groups or bins
          f = reshape(freq,m(k),[]); % Vectorize!     
          f2 = reshape(freq2,m(k),[]); % Vectorize!     
          % find average in each "tau group", y_k (each colummn of f)
          fa=mean(f,1);
          fa2=mean(f2,1);
          % first finite difference
          fd=diff(fa);
          fd2=diff(fa2);
          % calculate two-sample variance for this tau
          M=length(fa);
50a9b705d   bmarechal   add abs()
342
          sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2))));
b3b851a23   bmarechal   add cov test scripts
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
  
          % estimate error bars
          sme(k)=sm(k)/sqrt(M+1);
          
          if TAUBIN == 1
              % save the binning points for plotting
              fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1);
          end
          
      end % repeat for each value of tau
      
      if verbose >= 2, fprintf(1,'
  '); end
      calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds
  ',calctime); end
      
         
      
  %% Irregular data (timestamp)   
  elseif isfield(data,'time')
      % the interval between measurements is irregular
      %  so we must group the data by time
      if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)
  '); end
      
      % string for plot title
      name=[name ' (timestamp)'];
      
      % adjust time to remove any initial offset or zero
      dtime=data.time-data.time(1)+mean(diff(data.time));
      %dtime=data.time;
      % where is the maximum gap in time record?
      gap_pos=find(diff(dtime)==max(diff(dtime)));
      % what is average data spacing?
      avg_gap = mean(diff(dtime));
      
      if verbose >= 2
          fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).
  ');
          fprintf(1, '       Calculation time may be long and the results subject to interpretation.
  ');
          fprintf(1, '       You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.
  ',1/avg_gap);
          fprintf(1, '       Continue at your own risk! (press any key to continue)
  ');
          pause;
      end
      
      if verbose >= 1
          fprintf(1, 'allan: End of timestamp data: %g sec
  ',dtime(end));
      	fprintf(1, '       Average rate: %g Hz (%g sec/measurement)
  ',1/avg_gap,avg_gap);
          if max(diff(dtime)) ~= 1/mean(diff(dtime))
              fprintf(1, '       Max. gap: %g sec at position %d
  ',max(diff(dtime)),gap_pos(1));
          end
          if max(diff(dtime)) > 5*avg_gap
              fprintf(1, '       WARNING: Max. gap in time record is suspiciously large (>5x the average interval).
  ');
          end        
      end
   
  
      % find halfway point
      halftime = fix(dtime(end)/2);
      % truncate tau to appropriate values
      tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
      if isempty(tau)
          error('allan: ERROR: no appropriate tau values (> %g s, < %g s)
  ',max(diff(dtime)),halftime);
      end
      
      % save the freq data for the loop
      dfreq=data.freq;
      dtime=dtime(1:length(dfreq));
  
      if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...
  '); end
  
      k=0; tic;
      for i = tau
          if verbose >= 2, fprintf(1,'%d ',i); end
          
          k=k+1; fa=[]; %f=[];
          km=0;
          
          % truncate data set to an even multiple of this tau value
          freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i));
          time=dtime(dtime <= dtime(end)-rem(dtime(end),i));
          %freq=dfreq;
          %time=dtime;
          
          % break up the data into groups of tau length in sec
          while i*km < time(end)
              km=km+1;
                          
              % progress bar
              if verbose >= 2
                  if rem(km,100)==0, fprintf(1,'.'); end
                  if rem(km,1000)==0, fprintf(1,'%g/%g
  ',km,round(time(end)/i)); end
              end
  
              f = freq(i*(km-1) < time & time <= i*km);
              f = f(~isnan(f)); % make sure values are valid
              
              if ~isempty(f)
                  fa(km)=mean(f);
              else
                  fa(km)=0;
              end
  
              if TAUBIN == 1 % WARNING: this has a significant impact on performance
                  % save the binning points for plotting
                  %if find(time <= i*km) > 0
                      fs(k,km)=max(time(time <= i*km));
                  %else
                  if isempty(fs(k,km))
                      fs(k,km)=0;
                  end
                  fval{k}=fa;
              end % save tau bin plot points
              
          end
          
          if verbose >= 2, fprintf(1,'
  '); end
  
          % first finite difference of the averaged results
          fd=diff(fa);
          % calculate Allan deviation for this tau
          M=length(fa);
          sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2)));
  
          % estimate error bars
          sme(k)=sm(k)/sqrt(M+1);
          
  
      end
  
      if verbose == 2, fprintf(1,'
  '); end
      calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds
  ',calctime); end
      
  
  else
      error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
  end
  
  
  %%%%%%%%
  %% Plotting
  
  if verbose >= 2 % show all data
      
      % plot the frequency data, centered on median
      if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
      try
          % dsplot makes a new figure
          hd=dsplot(dtime,medianfreq);
      catch ME
          figure;
          if length(dtime) ~= length(medianfreq)
              fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)
  ',length(dtime),length(medianfreq));
          end
          hd=plot(dtime,medianfreq);
          if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).
  '); end
          if verbose >= 2, fprintf(1,'             (Message: %s)
  ',ME.message); end
      end
      set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
      hold on;
  
      % show center (0)
      plot(xlim,[0 0],':k');
      % show 5x Median Absolute Deviation (MAD) values
      hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r');
      plot(xlim,[-5*s.MAD -5*s.MAD],'-r');
      % show linear fit line
      hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
      title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
      %set(get(gca,'Title'),'Interpreter','none');
      xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
      if isfield(data,'units')
          ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
      else
          ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
      end
      set(gca,'FontSize',FontSize,'FontName',FontName);
      legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
      % tighten up
      xlim([dtime(1) dtime(end)]);
  
  
      % Optional tau bin (y_k samples) plot
      if TAUBIN == 1
          % plot the tau divisions on the data plot
          rfs=size(fs,1);
          colororder=get(gca,'ColorOrder');
          axis tight; kc=2;
          %ap=axis;
          for j=1:rfs
              kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end
              %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a
              for b=1:find(fs(j,:), 1, 'last' );
                  % plot the tau division boundaries
                  %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:));
                  % plot tau group y values
                  if b == 1
                      plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
                  else
                      plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
                  end
              end
          end
          axis auto
      end % End optional bin plot
      
  end % end plot raw data
  
  
  if verbose >= 1 % show ADEV results
  
      % plot Allan deviation results
      if ~isempty(sm)
          figure
  
          % Choose loglog or semilogx plot here    #PLOTLOG
          %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
          loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  
          % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
          %  When this is fixed in a future release, uncomment below to use normal errorbars
          %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
          % this is a hack to approximate the error bars
          hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
  
          grid on;
          title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
          %set(get(gca,'Title'),'Interpreter','none');
          xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
          if isfield(data,'units')
              ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
          else
              ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
          end
          set(gca,'FontSize',FontSize,'FontName',FontName);
          % expand the x axis a little bit so that the errors bars look nice
          adax = axis;
          axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
          
          % display the minimum value
          fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds
  ',min(sm),tau(sm==min(sm)));
          
      elseif verbose >= 1
          fprintf(1,'allan: WARNING: no values calculated.
  ');
          fprintf(1,'       Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate
  ');
          fprintf(1,'Type "help allan" for more information.
  
  ');
      end
  
  end % end plot ADEV data
      
  retval = sm;
  errorb = sme;
  
  return