Blame view

dat2allan.m 1.31 KB
0e276f200   bmarechal   new script to pip...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
  #!/usr/bin/octave-cli -q
  
  # allanplot.m computes Allan deviation from temporal dataset
  #
  # use :	allanplot.m file.dat column_i gain_i ad_opt
  #		allanplot.m file.dat [column_i,column_j] [gain_i,gain_j] [ad_opt_i,ad_opt_j]
  #
  # inputs:
  #	file.dat : [string]			file to load
  #	columns : int or [int]		columns to load
  #	fs : int or [int]			sampling frequency
  #	gains : float or [float]	gains to apply
  #	ad_opt : int or [int]		ad options :
  #										0 direct allan computation
  #										1 drift removed ad
  #										2 relative ad
  #										3 relative drift removed ad
  
  filename = argv(){1};
  col = eval(argv(){2});
  fs = eval(argv(){3});
  mult = eval(argv(){4});
  ad_opt = eval(argv(){5});
  
  if length(col) == length(mult)
  	ad_all = [];
  	for i = [1:length(col)]
  		data.freq = load(filename)(:,col(i)).*mult(i);
  		if ad_opt(i) == 1
  			data.freq = detrend(data.freq);
  		elseif ad_opt(i) == 2
  			data.freq = data.freq./mean(data.freq);
  		elseif ad_opt(i) == 3
  			data.freq = detrend(data.freq./mean(data.freq));
  		end
  		data.rate = fs(i);
  		[ad, S, err, tau] = allan(data, horzcat(reshape([1:0.1:9]'.*10.^[0:round(log10(length(data.freq)))-1],1,[]), 10^(round(log10(length(data.freq)))-1))./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0);
  		ad_all = horzcat(ad_all, ad', err');
  	end
  end
  dlmwrite(stdout, horzcat(tau', ad_all), '\t')
  exit